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We study machine learning class classification problems and combinatorial optimiza-

tion problems using physics inspired replica approaches. In the current work, we

focus on the traveling salesman problem which is one of the most famous problems in

the entire field of combinatorial optimization. Our approach is specifically motivated

by the desire to avoid trapping in metastable local minima-a common occurrence in

hard problems with multiple extrema. Our method involves (i) coupling otherwise

independent simulations of a system (replicas) via geometrical distances as well as

(ii) probabilistic inference applied to the solutions found by individual replicas. In

particular, we apply our method to the well-known k-opt algorithm and examine two

particular cases-k = 2 and k = 3. With the aid of geometrical coupling alone, we

are able to determine for the optimum tour length on systems up to 280 cities (an

order of magnitude larger than the largest systems typically solved by the bare k

= 3 opt). The probabilistic replica-based inference approach improves k - opt even

further and determines the optimal solution of a problem with 318 cities. In this

work, we also formulate a supervised machine learning algorithm for classification

problems which is called Stochastic Replica Voting Machine (SRVM). The method is

based on the representations of known data via multiple linear expansions in terms of

various stochastic functions. The algorithm is developed, implemented and applied

to a binary and a 3-class classification problems in material science. Here, we employ
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SRVM to predict candidate compounds capable of forming cubic Perovskite structure

and further classify binary (AB) solids. We demonstrated that our SRVM method

exceeds the well-known Support Vector Machine (SVM) in terms of accuracy when

predicting the cubic Perovskite structure. The algorithm has also been tested on 8

diverse training data sets of various types and feature space dimensions from UCI

machine learning repository. It has been shown to consistently match or exceed the

accuracy of existing algorithms, while simultaneously avoiding many of their pitfalls.
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Chapter 1

Introduction

1.1 The replica approaches

As will be made lucid in this work, in various problems, the term ”replica” will

allude to an individual solver/solution. We focused on two main problems where we

applied our physics-inspired replica approaches. One is the famous traveling salesman

problem, the other is supervised machine learning class classification problem. The

motivation behind our replica approach was triggered by an anthropological principle

known as ”wisdom of the crowds”. That is, a crowd or collection of solvers may solve

a problem far more accurately than a single solver (or human). Fig. 1.1 illustrates

how the replica approach works in general. In that figure, each sphere represents a

single solver (”replica”) for a specific problem which has its own configuration in the

parameter space. Usually a single solver might get trapped in a local minimum or

has some bias for the actual result. The collection of many solvers, however, might

overcome the drawback described above and then help to find the global optimal

solution and/or the most accurate result.

1
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Figure 1.1: (Color online.) Coupled replicas in a high dimensional energy landscape. The springs
schematically represent the tendency of replicas to collectively interact with one another when veering
towards viable minima.

1.2 Main results of this dissertation

My research focused on three applications of applying Physics-inspired replica

approach. Most of the new results are listed as follow: (a) An interacting replica

approach to the traveling salesman problem. The traveling salesman problem is an

NP-hard problem, and as such, no algorithm has been discovered which can solve it

in polynomial time. We demonstrated that with the coupling of geometrical distance

and probabilistic inference between different replicas we are able to solve optimally up

to 318 cities. We further find that our algorithm can be capable of coupled with more

sophisticated local minimization technique thus a better optimization results can be

expected. (b) A stochastic Replica-based voting Machine Algorithm for supervised

learning(SRVM). We formulated a supervised machine learning class classification

algorithm in general. We developed, implemented and applied the algorithm on many

benchmarks from UCI machine learning repository [1] and found that our algorithm

match or exceed the accuracy of the existing state-of-art algorithm. (c) Stochastic

Replica voting machine prediction of stable Perovskite and binary alloys. Here we

employ SRVM to predict candidate compounds capable of forming cubic Perovskite

structure and further classify binary(AB) solids. We determined the boundary in

feature space delineating the requisite condition for material formation.

2
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In below sections, I will briefly elaborate on these.

1.3 Traveling Salesman Problem

Combinatorial optimization problems [2] often possess a relatively large number of

locally optimal pseudo-solutions, similar to the abundance of metastable energy states

in complex physical systems. This can make determination of the global optimum

difficult, especially for heuristic algorithms which attempt to optimize a cost function

locally by iteratively perturbing the parameters, testing the resulting change in the

cost function, and allowing the state change if the cost function is decreased or some

other conditions are satisfied.

The Traveling Salesman Problem (TSP) is one of the most famous problems in

the entire field of combinatorial optimization. It is often used as a benchmark for

testing new optimization approaches. The TSP is an NP-hard problem, and as such,

no algorithm has been discovered which can solve it in polynomial time. The problem

is defined as follows:

Given a set of N cities, find the shortest tour which visits each city exactly once

and returns to the starting city.

In the current work, we present new optimization methods based upon the con-

cepts of (i) geometrical distance coupling (GDC) (see Fig. 1.2) and (ii) probabilistic

inference amongst independent replicas (see Fig. 1.3). We apply these tools to the

Traveling Salesman Problem. We demonstrate that while a single replica can do quite

poorly in solving a challenging problem, via the use of (i) and (ii) above, the ensemble

of replicas can address much harder problems.

1.4 Stochastic Replica-Based Voting Machine Meth-

ods

3
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Figure 1.2: (Color online.) An illustration of the geometric coupling between replicas. The outcome
of this basic coupling is that a given city (node) i is moved to a position averaged over all replicas.
In this example, there are three replicas. The link SS′ is common to all replicas. S is a “standard
city” that is used to calibrate distances (see Appendix). This city is chosen at the beginning (by
symmetry the choice of this city is immaterial). (a) Three relevant replicas sharing a common edge
S-S’. i is the randomly chosen city. The designations A3, B5, and C7 represent the same city i as it
appears in replica 1, replica 2 and replica 3 respectively. In these three individual replicas, the tour
length between S and i are 10, 20, and 30 respectively. After averaging, the city i will be moved
to cities with a distance of 20 away from S in all three replicas. A5, B5 and C5 are the target
city where A3, B5 and C7 will be inserted (see Appendix). (b) Updated replica configurations after
inserting city i into the target location. (c) A graphic depiction of the change between the initial
(a) and final (b) replicas before and after the move of city i in replica 1.

4
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Replica

1

2

3

24

Figure 1.3: (Color online.) Inference between replicas for Problem lin318. We define a “bubble”
as a set of nodes where the neighbor cities differ among the replicas. Here, green nodes denote the
nodes which have identical neighbors in all R replicas (R = 24 here); we define these nodes to have a
probability p = 1. In this example, there are two distinct bubbles with nodes that are, respectively,
depicted in this figure by two different colors- i.e., “yellow” and “red” spheres. The configurations
inside the bubbles are different for each replica while the tour sections outside the bubbles are the
same for all 24 replicas.
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Nowadays we have already entered the ”Big Data” era. We are generating tons of

tons of data everyday where we browse the news on the internet, navigate to a des-

tination by a GPS device, play the songs via mobile app and etc. It is said that the

data is the ”future oil”. Due to the fast-growing computing power and the accumu-

lated data from our daily life artificial intelligence plays a more and more important

role in advancing our society. One interesting and important branch from artificial

intelligence is called machine learning. Broadly, machine learning is the process of

allowing computer programs to parse available data and learn (infer) general rules.

The goal of machine learning is to find a model using input data which can be gener-

alized and applied to new data in such a way that model performance increases with

increasing amounts of input data. Towards that end, there are two main types of ma-

chine learning algorithms: (i) supervised and unsupervised. Unsupervised learning

involves training data with unknown labels or associations (ii) Unsupervised learning

algorithms seek to label instances based on their connections or commonalities with

other instances, via methods such as clustering [8, 9, 10, 11, 12, 13, 14]. On the other

hand, supervised machine learning corresponds to learning on training data that has

known labels, i.e., data for which the “right answer” is known.

In this dissertation, we will focus specifically on supervised machine learning corre-

sponding to data with either discrete (classification) or continuous (regression) labels.

We will introduce our new algorithm that learns by fitting an ensemble of stochastic

series expansions to the training data, and then ‘votes’ on the output of the label. We

will demonstrate, through detailed case studies, that this algorithm, which we term

the “Stochastic Replica Voting Machines” (SRVM) method, rivals the best perform-

ing contemporary models, and additionally surpasses them in various performance

metrics. We will demonstrate that the algorithm applies equally well to both classi-

fication and regression.

Fig. 1.4 illustrates an example of supervised machine learning class classification.

The problem being studied here is called ”Four Class” which contains 862 training

data points. Each pair of training data contains a vector input which has two dimen-

sions and a binary discrete output(binary class). The goal here is to find out the best

6
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Figure 1.4: (Color online.) B and D represents the +1 and -1 classes respectively
in the Four-class data set. The curve F denotes the boundary between these two
classes to this Boundary predicted by the SRVM algorithm when using a multinomial
of order n1 = n2 = 7.

boundary that can separate the two output classes well. We are looking for such a

boundary that it has the best predicting ability once given another new input data.

The above classification process is fulfilled by the SRVM using the Polynomial kernel.

1.5 Prediction on Perovskite and AB solids using

SRVM

Recently, there has been a flurry of activity involving the use of Machine Learning,

an important subfield of Artificial Intelligence, in the study of materials and complex

physical systems, e.g., [1, 3, 5, 6, 2, 7, 8, 9, 10]. Data mining techniques may enable a

rapid search through millions of candidate compounds in order to identify promising

7
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technological materials and to potentially predict their detailed properties. Such a

task may require far more significant efforts when performed experimentally [12, 11]

via the traditional trial and error approach. Machine learning can make such searches

far more efficient by systematically pointing to promising materials that may then

be fabricated and tested experimentally. In this work, we will focus on two material

types: Perovskite and AB solids.

The chemical composition of the Perovskites is ABX3, where A and B are cations

and X is an anion bonding to both cations. In the examples that we will study here, X

will be an oxygen anion. Following a standard convention, the A atoms are defined

to be the larger of the two cations. A cubic crystal structure is formed by corner

sharing BX6 octahedra as seen in Fig. 1.5.

To ensure stability, the relative size of the A and B cations must, typically, satisfy

certain criteria [19]. (Additional illuminating relations between the atomic radii and

structure are found in [20].) There are, at least, 95 known stable elements out of

which there could be thousands of different possible candidate elemental combinations

that may exhibit a Perovskite structure. To experimentally determine the possible

properties of these candidate Perovskites would be an arduous if not impossible task.

Thus, in recent years, materials scientists turned to structure-properties algorithms in

order to predict the properties of new theoretical compounds. Along similar lines, in

the current work, we will introduce a new algorithm(SRVM) that takes in different

elements as inputs and predicts whether or not their combination will result in a

stable Perovskite.

The algorithm takes, as an input, the data from 188 different known combinations

of A and B ions out of which 29 are capable of forming a Perovskite structure [19]. In

machine learning parlance, we are training a new binary classifier over a set of known

data. We then apply the trained classifier to investigate hitherto unknown chemical

compositions in order to assess their viable formability as stable Perovskite. We

will follow the prevalent practice of classifying the stability of candidate Perovskite

materials by two figures of merit: (i) the “tolerance ratio”, (rA + rX)/
√

2(rB + rX)

with ris being the radius of the ions, and (ii) the “Octahedral factor” rB/rX .

8
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Figure 1.5: Ideal perovskite structure illustrated for ABO3. Reprinted from reference
[18].

Fig. 1.6 provides a summary of our classification results for the Perovskite struc-

ture problem for all the algorithms involved in this work. The average accuracy that

we reached with the Gaussian kernel from SRVM for determining stable cubic Per-

ovskite oxides was 94.19 %. This accuracy may be contrasted with the performance

of the current state of the art SVM package [35]; the SVM method yielded a mean

accuracy of 92.53 %.

We next turn our attention, using the data of [36], to the classification of binary

solids [26] (of chemical composition AB) into one of q = 3 groups (denoted W, Z or

R [26, 36]). We employed two commonly used figures of merit as features,

rσ ≡ rAs + rAp − rBs − rBp ,

rπ ≡ rAp − rAs + rBp − rBs . (1.1)

9
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Here, rAs , rAp , r
B
s and rBp denote the pertinent radii for an electron bound to the A or

B ion that is in an s or p orbital.

In Figure 1.7, we provide the phase boundaries (between the W, Z, and R phases)

as ascertained by SVM (see the solid curves therein) alongside the boundaries de-

termined by our SRVM method (the domains of the different phases as predicted by

SRVM are marked by different colors).

1.6 Overview of dissertation

This dissertation contains information related to the following publications or

manuscripts in preparation arranged into chapter divisions as follow: (i) Chapter 1: Z.

Nussinov, P. Ronhovde, D. Hu, S. Chakrabarty, B. Sun, N. Mauro, K. Sahu, Inference

of Hidden Structures in Complex Physical Systems by Multi-scale Clustering, Volume

225 of the series Springer Series in Materials Science pp 115-138 (ii) Chapter 2: B.

Sun, B. Leonard, P. Ronhovde and Z. Nussinov, An interacting replica approach

applied to the travelling salesman problem, SAI Computing Conference Proceedings

2016, IEEE Xplore. (iii) Chapter 3: P. Chao, T. Mazaheri, Z. Nussinov, B. Sun,

and N. Weingartner, A Stochastic Replica-Based Voting Algorithm For Supervised

Learning, to be submitted (iv) Chapter 4: B. Sun, T. Mazaheri, J. Scher-Zagier,

D. Magee, P. Ronhovde, T. Lookman, and Z. Nussinov, Stochastic Replica Voting

Machine prediction of stable Perovskite and binary alloys, arXiv: 1705.08491v2.

10
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Figure 1.6: The formability of cubic perovskite structure at two different resolutions.
The yellow region is that in which all methods (SVM, SRVM with both multinomial
and Gaussian kernels) predict that cubic Perovskite structures will form. In panel
(a), we show the entire region of measured tolerance and octahedral ratios. Panel (b)
provides a zoomed viewed. Two possible candidate compounds that can form cubic
Perovskite structure are highlighted: EuHfO3 and EuZrO3.
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Figure 1.7: Boundary predicted by SVM algorithm and SRVM with Gaussian kernel.
The SVM algorithm predicts the boundaries formed by two curves and the SRVM
predicts the boundaries formed by the shaded areas. There are three classes of struc-
tures related to AB solids that are predicted here. They are called W, Z and R
structure respectively.
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Chapter 2

An Interacting Replica Approach

Applied to the Traveling Salesman

Problem

2.1 Introduction

In this chapter, We present a physics inspired heuristic method for solving com-

binatorial optimization problems, especially for Traveling Salesman Problem. The

concept of a local optimizer acting on some cost function in parameter space is equiv-

alent to modeling a thermal system exploring its energy landscape. At a certain

temperature, a thermal system can realistically exchange a certain amount of heat

with the environment. While the system is generally attempting to find the lowest

energy state, it can temporarily gain energy, and, in so doing escape from a local

energy well. However, if the well is deeper than the realistically allowable energy

gain, then the system may remain stuck in a metastable, locally optimal energy state

indefinitely. This is what happens in spin glasses [2], for instance.

Analogously, if a local well of the cost function in parameter space is deeper than
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the realistically allowable positive gain in the cost function, then the simulation of a

local optimizer will remain stuck, creating a design tradeoff. The greater potential

gain allowed in the cost function, the easier it is for the simulation to escape potential

wells, but the longer it will take to actually find a minimum because it will have a

larger search space at each step, and it will be moving “uphill” more often. This is

the reason that heuristic algorithms can generally be relied upon to produce good

pseudo-solutions a few percent above the optimum value, but rarely find the actual

global optimum in sufficiently complex problems.

Previous methods such as replica exchange [3] and genetic algorithms [4] have

attempted to address this problem with varying degrees of efficacy depending on con-

text. We were inspired to use “information-based replica” correlations and inference

to systematically detect ideal subgraph (or “community”) partitions of a large graph

as two of us have done several years ago [5]. By “replicas” we here allude to inde-

pendent copies of the same problem. Since then these notions have been applied to a

variety of complex system physics (both static and dynamic) and image segmentation

problems [6, 7, 8, 9]. More recently, other works applied similar notions to a host

of interesting problems [11, 12, 13]. Free-energies and entropies of such ensembles

or “multiplexes” have been discussed in [5, 14]. In our approach we do not focus

solely on directly extracting the minimum amongst an ensemble of solvers. A key

ingredient that we introduced in earlier work is the use of inference to predict which

features of the solutions appearing in disparate replicas may coincide with those in

the optimal solution; this inference coupling as well as other effective “interactions”

between the replicas (e.g., a “geometrical coupling” discussed below) between the

replicas may lead to solutions that at intermediate steps elevate the energy (yet lower

a “free energy” [5]) similar to the way in which thermal effects may, at intermedi-

ate steps, elevate energies in annealing algorithms. Transitions in the complexity of

combinatorial optimization problems such community detection problems have crisp

signatures in inter-replica correlation functions and information theory measures[10].

Augmenting Refs. [5, 6, 7, 8, 9, 10], we further also note the more recent work of Ref.

[15] in which the authors demonstrate that the inference algorithms based on evolving
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interactions between replicated solutions in a cavity type approach have better per-

formance in the binary Ising percepton problem. We further note that the “wisdom

of the crowds” (which we took in Refs. [5, 6, 7, 8, 9, 10] to be independent replicas)

has been long appreciated [16].

The approach that we further develop in the current work- that of geometric

interactions between individual solvers and probabilistic ensemble inference- emulates

the biological and sociological advantages long known colloquially from collective

behaviors and “wisdom of the crowds” [16]. Historically, biologically inspired “swarm

intelligence” algorithms [17] have spawned algorithms such as the well known Ant

Colony System (ACS) [18] with which we will later compare the new probabilistic

variant of our method. In a broad sense, the spin-glass physics cavity approximation

inspired message type algorithms of the type of Ref. [15], exchange Monte Carlo [3],

genetic algorithms [4], the work that two of us developed in Refs. [5, 6, 7, 8, 9, 10], the

ACS, and a multitude of other approaches might all be cast as particular realizations

of broad ensemble based interactions or moves.

In the current work, we present new optimization methods based upon the con-

cepts of (i) geometrical distance coupling (GDC) and (ii) inference amongst inde-

pendent replicas. We apply these tools to the Traveling Salesman Problem. We

demonstrate that while a single replica can do quite poorly in solving a challenging

problem, via the use of (i) and (ii) above, the ensemble of replicas can address much

harder problems.

We employ a quantity, which we term the “GDC distance” C(A,B) ≥ 0 (see

Appendix) to measure the similarity between two tours A and B. A distance C(A,B)

=0 indicates that tours A and B are identical. We coupled otherwise independent

optimizers via their geometrical distances, so that the optimizers will essentially have

two “forces” influencing their behavior, see Fig. 1.1. Each optimizer will (i) indepen-

dently desire to decrease its cost function locally, while simultaneously attempting

to (ii) minimize the GDC between itself and all other optimizers (portrayed by the

harmonic springs in Fig. 1.1). We demonstrate that through this coupling, local opti-

mizers can escape from wells which otherwise would have confined them permanently,
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in the cases we studied.

An additional central tool that we will invoke in this work is that of probabilstic

inference from the different replicas, e.g., [5, 8] or a “replica inference based” (RIB)

method. In the simplest rendition of this approach, we simply count how many times

a given feature of the solution appears in the different replicas. If a structure of the

solution (e.g. in the travelling salesman problem that we will discuss in this work,

a tour sequentially passing through the same three cities) is common to all or many

solvers then one may anticipate this structure appears in the optimal global solution.

That is, augmenting the GDC discussed above, the replicas interact effectively with

one another via their correlations. By sequentially finding common features in inde-

pendent copies or replicas of the problem and assuming these to be correct and left

untouched, the system to be examined is sequentially made smaller and easier to solve

anew. Both of the approaches that we will employ in this work may be viewed as

emulating the minimization of an effective multi-replica “free-energy”. Schematically,

as in Ref. [5], we may consider an effective free-energy given by

F =
R∑
i=1

Ei[φi]− TS[{φi}Ri=1] (2.1)

where φi are the collection of coordinates that describe solver (replica) i, the quantities

{Ei} are the energies of contending solutions in the disparate replicas, S is an inter-

replica correlation functional, and T > 0 sets a relative weight between the sum of

the intra-replica contributions ({Ei}) and the inter-replica correlations (that may,

e.g., imitate the GDC, RIB or other couplings). The detailed iterative minimization

procedures that we describe in this work for the Traveling Salesman Problem are

particular simple examples of the more general idea embodied by the minimization

of the replica ensemble functional of Eq. (2.1). The springs in Fig. 1.1 symbolize

inter-replica effects. For finite T , both intra-replica and inter-replica effects must be

assuaged when minimizing F .
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2.2 Algorithms for the Traveling Salesman Prob-

lem

There are roughly three classes of algorithms for Traveling Salesman Problem.

The first class is the greedy heuristic which gradually forms a tour by adding a new

city at each step, such as the Nearest-Neighbor algorithm [21]. In our method, we use

the Nearest-Neighbor algorithm to initialize a candidate tour construction. Briefly,

the Nearest-Neighbor algorithm is given by three steps: (1) Select a random city. (2)

Find the nearest unvisited city and go there. (3) Check if any unvisited cities are

left? If yes, go to step 2. If no, return to the first city.

The second class of heuristic TSP algorithms is a tour improvement approach. A

typical example is given by the k-opt algorithm which seeks to iteratively improve

the current state of a tour by removing k edges and replacing them in the most

optimal way by random searching on a limited number of cities at a time. A famous

local search algorithm by Lin-Kernighan (LK) [22] belongs to this class. The LK

algorithm is a variable k-opt algorithm which decides which k is the most suitable at

each iteration step. This makes the algorithm quite complex, and few have been able

improve it. A more in-depth study of the LK algorithm with possible improvements

was made by Helsgaun (LKH) [23].

The third class of heuristic methods is a composite algorithm that combines the

features of the former two. A good example can be found in Dorigo and Gambardella

[24] where the authors combined the ant colony system (ACS) [18] with the 3-opt

method to achieve strong results. Here the ACS acts like a more sophisticated tour

construction algorithm which allows communication (pheromones left by individual

ants) between different ant solvers. 3-opt is the local optimizer which helps to optimize

the results obtained with ACS.
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2.3 Geometrical distance coupling algorithm

As noted above, we use the geometric distance coupling between different solvers

(or replicas) to enhance the solutions found by individual solvers. To demonstrate

the strength of our approach and the degree to which coupling between replicas can

dramatically improve the results, we apply our method on the bare k-opt algorithm.

On their own, sans the use of replicas, the k=2 or 3 opt-algorithms have a very poor

performance; this makes the improvement using our replica based approach very clear.

Our GDC replica based approach may, in principle, be applied to any algorithm (not

solely k-opt). The GDC algorithm is implemented as follows:

1. Use the Nearest-Neighbor Algorithm [21] to seed all the replicas, beginning at

random cities in different replicas to ensure some variation in the initial states.

2. Perform a variable initial number of k-opt steps independently on all replicas.

3. Apply the GDC step (after a given number of iterations) as follows:

(a) Determine the most common edge among all replicas.

(b) For replicas that share the identified common edge (see Fig. 1.2 as well

as Appendix for further discussion), attempt to move a random city to its

average position relative to common edge in all relevant replicas. Allow

the move only if the total tour length is decreased or if it is increased by

less than a specified tolerance.

4. Perform a variable number of k-opt steps independently on all replicas.

5. Go to step 3 until a global number of iterations is reached.

To clarify, we start the Nearest Neighbor algorithm in different cities for each

replica and perform an initial number of k-opt steps in order to guarantee that our

replicas are not starting too close to each other in parameter space. The GDC at-

tempts to ensure that all of the replicas eventually converge on the same location in
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parameter space. If the replicas become clustered too closely together (as in, e.g.,

the cartoon of Fig. 1.1), they may not efficiently explore the landscape of possible

solutions and fail to find the global minimum.

During the GDC step, we randomly select a sequence of cities. We then calculate

the average position of those cities relative to the most common edge for the replicas

which contain the identified common edge. Then, for each relevant replica, that city

is plucked from its current location and placed in the average position. The locally

broken tour sequence is reattached in the manner described in Appendix. If the tour

length is either decreased or increased by less than the tolerance, then the move is

accepted, otherwise it is rejected. In this manner, the algorithm is able to locally

decrease the quantity

Qj ≡
1

r

r∑
i=1

|Sij − Sj|. (2.2)

In the above, r is the number of the relevant replicas which share the common edge

in step 3 of GDC algorithm, 1 ≤ j ≤ N is the city index, Sij is the distance between

city j and a common edge in replica i, and Sj is the average of Sij (as averaged over

all the relevant r replicas). By lowering Qj for different cities j, the replicas generally

become more similar to one another.

2.4 Results from geometrical distance coupling al-

gorithm

We tested our algorithm on several instances from TSPLIB [25] using k = 2 and

3 for the k-opt step. We demonstrated that within a certain range of N for which

2-opt and 3-opt alone almost always failed to find the global minimum, our enhanced

algorithm was able to find it in a reasonable amount of time. For some larger values

of N , our algorithm also failed to find the minimum, but it did significantly improve

the k-opt estimate, and we believe that it could find the minimum if mated with an
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appropriate optimizer which is more sophisticated than the standard 2- and 3-opt

methods.

The results are summarized in Table 2.1 where length and time values are averaged

over 10 runs. The unit of the CPU time here is second. The GDC enhanced algorithm

is labeled “2-opt GDC” and “3-opt GDC” respectively, for the base 2- or 3-opt local

search routine. The parameters used here were R = 20 replicas, 1 geometrical distance

coupling step consisting of N − 2 moves alternated with 1000 to 15 000 k-opt steps,

and an allowable increase in the tour length of 0.2% - 1% during each attempted GDC

move. For all instances studied in Table 2.1, we performed 1 000 000 initial k-opt

steps independently on all replicas for step 2 in Sec. 2.3. For the instances with a

small number of cities (berlin52, eil51, pr76, eil76) we used approximately 1000 k-opt

steps in step 4. For the instances with a relatively large number of cities (ch130,

ts225, a280, lin 318, and att532), we invoked 15 000 k-opt moves in step 4 of the

algorithm.

We allowed larger tour length increase tolerance in step 3(b) for larger N prob-

lems. The GDC method using the 3-opt optimization can correctly solve all examined

TSPLIB [25] problems up to 280 cities. If 2-opt is applied instead of 3-opt the max-

imal solvable size is 225. We note that neither the bare 2- nor 3-opt by themselves

are not able to find the optimal solution for even the smallest of these examples given

a comparable number k-opt optimization steps. The time required to find the global

optimum with the GDC step is large compared to the computing time for the k-opt.

Part of the reason is that the k-opt optimization is easily trapped in local minima, but

the GDC step is capable of pulling the optimizer from the local minima and having

them explore a much broader region of the solution space.

We investigated the effect of the number of replicas used on the performance of

the algorithm. Figure 2.1 and 2.2 contrast results obtained when our GDC algorithm

is applied with R = 5 and R = 20 replicas to improve the bare 2-opt and 3-opt

respectively (we term the resultant algorithms 2-opt GDC and 3-opt GDC) in the

lin318 problem. The average tour length in the R = 5 case using the 2-opt GDC

was 42 479 whereas when using R = 20 replicas, the 2-opt GDC yielded a path of
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Figure 2.1: (Color online.) The improvement of the bare 2-opt method by the use of replica coupling
for the lin318 problem. The figure shows that tour lengths found by invoking R=1 (black squares),
R=5 (red circles) and R=20 (blue triangle) replicas averaged over Y ≤ 8 solution attempts. The
horizontal axis shows the results obtained by including Y attempts. Applied to the 2-opt GDC, the
use of R = 20 replicas produced better results than the use of R = 5 replicas.
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Figure 2.2: (Color online.) The improvement of the bare 3-opt method by the use of replica coupling
for the lin318 problem. For 3-opt GDC the average tour length for the tested range of replicas was
very close, but when R = 20, the algorithm still found a smaller tour length.
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distance 42 404. Not too surprisingly, in both the 2-opt GDC and the 3-opt GDC, the

R = 20 replica case provides shorter tour lengths than the R = 5 replica algorithm;

this improvement with increasing R is smaller for the 3-opt GDC (as the bare 3-opt

algorithm is better than the 2-opt method).

2.5 Probabilistic replica-inference based algorithm

Next, we show how we developed a replica-inference based (RIB) algorithm to,

e.g., solve the lin318 test problem and the att532 test problem. The RIB algorithm

is implemented as follows:

1. Use GDC Algorithm to seed all the replicas (the total number of replicas is R).

2. For all the replicas, calculate the probability distribution of the nodes (see

equation (2)).

3. Given the probability information of the nodes, divide the tour into different

parts: “bubble” region in which different tours appear in disparate replicas and

a “backbone” region which is common to all replicas (see Figs. (2.9, 2.13)).

4. Keeping the common backbone region unchanged, examine different tours in the

bubble regions such that when combined with the backbone path, they will lead

to new viable solutions (replicas) and then pick the one (replica X) that has the

shortest path. When we examine different configurations in the bubble regions

we must pay attention to the “pairing” inside the bubbles (see Figs.(2.9,2.13)

and discussion below). We also observe that inside a given bubble there are no

lines that cross as required by the triangle inequality (see Fig. 2.4).

5. Two replica comparison (performed R times): compare the replica X found in

step 4 with the R original replicas that existed prior to step 4 through steps

2-4.Each time after step 4, update the replica X found in step 4. A final solution

will be produced after R times of two replica comparison.
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In the up and coming, we will introduce and invoke a probability pj associated

with each node j. This probability will measure the frequency that the links to the

incoming (i) and outgoing (k) associated with each city j are the same amongst all

replicas. That is,

pj =
Mj

R
. (2.3)

Mj is the number of times that the composite link 〈ijk〉 connecting the three cities

i, j and k appears in the ensemble of R replicas studied.

In what follows, we introduce the concept of a “bubble” alluded to in the algorithm

above. A “bubble” is, by fiat, comprised of all nodes j for which the composite links

〈i, j, k〉 are not the same across all replicas (i.e., nodes for which pj < 1). The set of

such nodes must generally terminate somewhere and is linked to a backbone of nodes

that have the same links in all replicas. The termination points marks the boundaries

of the “bubbles”. In the more detailed representations of the tour solutions in some

of the figures that follow, we will typically mark green all points j for which the links

〈ijk〉 are identical in all replicas (i.e., the associated probability pj = 1).

In Fig. 2.5, we schematically depict typical “one- in-one-out” and “two-in-two-

out” bubbles (i.e., bubbles that are attached to the common backbone by either two

or four points).

2.6 Results of the probabilistic replica inference

approach

We next apply our replica-inference based algorithm to solve the lin318 test prob-

lem from TSPLIB (see 3-opt GDC results in Table 2.1). Typically, we used R = 24

replicas. The known true (i.e., minimal distance) tour solution is a path of length 42

029. Each of the R = 24 replicas employed provided a contending solution; the paths

in each of the replicas that varied in length from 42 050 to 42 199.
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A significant fraction of theR = 24 configurations produced by the GDC algorithm

(discussed in sections 2.3, 2.4) when it is applied for each of the R replicas share three-

site configurations of the type shown in Fig. 2.3. Schematically, the composite link

〈ijk〉 may be shared amongst numerous replicas as is illustrated in Fig. 2.6. To

quantitively measure this similarity, we employ (as we have alluded to in sections

2.3) a probability distribution pj based on the these link patterns 〈ijk〉 associated

with each node j. That is, in every replica each node has two adjacent nodes, so

pj is defined as the max number of replicas for which j shares the same neighbors

(where j is in the middle) divided by total number (R) of replicas (R = 24 in our

example calculation here). In Fig. 2.7, we show a representative plot the probability

distribution for different nodes on the lin318 problem.

We wish to take advantage of the information contained in all of replica tours.

Toward that end, we observe in Fig. 2.7 that 162 out of 318 nodes (approximately 50%

of the nodes) have a probability of 1. We conjectured that the common structures

for nodes which have a probability equal to 1 are the same as that from the known

optimal solution. To test whether it was the case, we made a plot of Fig. 2.8. In Fig.

2.8, pj is a given fixed probability pj defined above when averaged over all replicas.

Then we looked at the set of all links 〈i, j, k〉 having that probability pj. q is the

fraction of these links that appear in the optimal solution; we then plot q versus pj

in Fig. 2.8.

Perusing Fig. 2.8 (associated with the lin318 problem), we observe that links

〈i, j, k〉 with inter-replica frequency p = 1 (i.e., links that consistently appeared in all

replicas) indeed appeared in the optimal tour. Furthermore, numerous links 〈i, j, k〉

with p < 1 (i.e., those which were not consistent across all replicas) also appeared

in the optimal shortest tour solution. In what follows, we introduce the concept of

a “bubble” as it pertains to the current problem. A “bubble” is, by fiat, comprised

of all nodes j for which the links 〈i, j, k〉 are not the same across all replicas (i.e.,

nodes for which p < 1). The set of such nodes must generally terminate somewhere

and is linked to a backbone of nodes that have the same links in all replicas. The

termination points marks the boundaries of the “bubbles”.
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In the replica-based inference approach, the common structures with p = 1 are left

untouched. We aim to solve the smaller and less difficult bubble problems separately

instead of the entire tour map. In Figs. 1.3 and 2.10, nodes (represented as spheres

in a connected tour map) whose probability is p = 1 are colored green and those with

p < 1 are colored red or yellow.

We now turn to step 3 of our algorithm. By definition, the bubbles encompass

the same set of nodes in all replicas. That is, if there is at least one replica in which

a red (or yellow) node a is attached to another red (or yellow) node b, then a and b

will lie in the same bubble for all replicas. In the lin318 problem, we obtained two

bubbles by comparing the 24 replicas to each other. This is illustrated in Fig. 1.3.

(Different colors refer to different bubbles.)

Next, we apply step 4. As mentioned previously, the green nodes in Fig. 1.3 remain

unchanged. We then solved for the optimal tour inside the two identified bubbles for

this problem. The shortest intra-bubble tour for the larger bubble (red nodes) is

26 591 (from replica 7). The shortest intra-bubble tour for the smaller bubble (yellow

nodes) is 578 (this also appeared in replica 7). Although we cannot find the optimal

solution for lin318 problem at this stage, the current best tour length is 42 050.

Caution must be exercised in choosing the optimal “intra-bubble” tour among all

the relevant replicas. We mandate that the resultant tour is a valid TSP solution

(i.e., we need to make certain that (i) the tour visits each node exactly once inside

any bubble and that (ii) the formed global tour forms a closed path). To that end, we

should consider the Pairing between two nodes alludes here to the circumstance that

these two nodes are continuously connected to each other by an intra-bubble segment

(see Figs. (2.9, 2.13)). Figs. (2.9, 2.13) constitute top views of the tours depicted in

Figs. (1.3, 2.12) where the common backbones and regions with differing node paths

(“bubble”) are made clear. The blobs in Fig. 2.9 schematically denote bubbles. The

green solid lines (backbones) are the tour path formed only by common structures

(which we do not want to change). The dotted lines inside the blobs are possible tour

paths (we want to find the shortest such paths). Within the blobs there might be

some common structures between the different replicas. Among all of the 24 replicas
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Table 2.1: TSP performance and results using 2-opt, 3-opt, 2-opt GDC, and 3-opt GDC on a selection
of TSPLIB instances. k-opt GDC are results from the current work. The values of tour lengths and
CPU times are averaged over 10 runs. For the studied instances, 2-opt and 3-opt always failed to
find the global minimum alone. With geometrical distance coupling (see Sec. 2.3), our 2-opt GDC
algorithm found the global minimum up to N = 225 cities, and 3-opt GDC found the optimal tour
up to N = 280. Although neither 2-opt GDC nor 3-opt GDC found the optimal solution for lin318,
they significantly improved the base 2- or 3-opt estimate. The percentages above the optimum for
lin318 was 5.8% for 2-opt and 3.1% for 3-opt which was reduced to 0.94% and 0.22% for 2-opt GDC
and 3-opt GDC, respectively.

Benchmark problems Bare k − opt algorithms Results from our new method
2-opt 3-opt 2-opt

GDC
3-opt
GDC

Problem Cities Optimal
length

Length CPU
time

Length CPU
time

Length CPU
time

Length CPU
time

berlin52 52 7542 7721 0.035 7606 4.3 7542 2.31 7542 1.62
eil51 51 426 433 0.023 429 13.41 426 6.82 426 39.36
pr76 76 108159 110875 0.057 109096 27.32 108280 8.511 108159 399.57
eil76 76 538 553 0.05 544 29.35 538 50.3 538 184.63
ch130 130 6110 6354 5.09 6232 8.377 6110 1003 6110 410
ts225 225 126643 128103 7.08 126885 110.4 126643 3398.6 126643 76.44
a280 280 2579 2701 8.88 2642 143.43 2615 1500 2579 7807.8
lin318 318 42029 44473 7.66 43347 48.57 42423 15120 42124 28080
att532 532 27686 29338 10.88 28447 60.00 28607 20220 28035 40770

there were the two possible ways of pairing for the bubble nodes at the boundary.

The bubbles in Fig. 2.9 are of “two-in-two-out” type. That is, the full tour will enter

and exit each bubble twice. As discussed above, when we pick the optimal solution

for each bubble and combine them together to form a new global solution we must

make it certain that the tour is still valid.

Step 5: We were able to decrease the old tour length for replica 7 by using just

two replicas. In doing so, we find that we can decrease the tour length from 42 050 to

42 029 by swapping common bubble appearing in both replicas 3 and 7 and having the

same “in-out” pairing. The bubbles being swapped are of the “two-in-two-out” type

with the same pairing (see Fig. 2.9). So we can safely swap these two bubbles. The

results are shown in Figs. 2.10 and 2.11. The total tour length associated with the

common bubble in replica 3 is 4042 compared to 4063 for replica 7 with a difference

of 21. Upon swapping the lower distance tour in the smaller bubble from replica 3

with the existing one in replica 7, replica 7 attained the ideal optimal tour length
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of length 42 029- the correct solution of the lin318 problem. The resulting tour is

depicted in Fig. 2.11.

We also applied our replica inference method to further optimize the solutions

obtained by the GDC algorithm for the att532 problem [25]. In Fig. 2.12, all 24

replicas were employed to produce the common backbone (“green”) nodes and bubbles

(differing tour regions attached to the common backbone) as we did for the lin318

instance. There were six bubbles in total. Five of these bubbles were of the “one-in-

one-out” type while the rest were of the “three-in-three-out” type (see Fig. 2.13). In

all of the replicas, the ”in-out” pairing was between the very same sets of node pairs.

For the five smaller bubbles, by virtue of their minute size, brute force minimization

quickly produced to find the optimal solution. For the “three-in-three-out” bubble

we inserted the shortest path result (that obtained from replica 17) among the 24

replicas. These steps led to a solution for the att532 problem having a total tour

length of 27 937 as compared to the average replica result of 28 035. We tried

to decrease the tour length of the big bubble of “three-in-three-out” type further by

invoking replica pair comparisons. This iteratively led to a replacement of the original

three-in-three-out bubble to many far smaller bubbles. We then investigated whether

we can optimize the original big bubble by swapping these smaller bubbles between

replica 17 and others. Adopting some smaller bubble solutions from replicas 1,10,

and 23 respectively, this set of sequential minimization and inference operations led

to a better solution having a tour length 27 881. The process is illustrated in Fig.

2.14. The length of the resultant contending solution is 27 881. (The known optimal

shortest path for att532 has a tour length equal to 27 686.)

Although we still cannot find the global minimum for att532, the solution of 27

881 produced by GDC algorithm and bubble method togother is only 0.7% above the

optimum. More importantly, by employing inference, we were able to reduce the large

problem involving a minimization of the path of all nodes in the graph to a set of

smaller problems involving disparate “bubbles”. Other than the “three-in-three-out”

bubble the rest tour configuration was found to be the same as the known optimal

solution.
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To better understand the difference between our solution and the known optimal

solution, we compared our replicas to the known optimal solution. Perusing Fig. 2.13,

we find that despite of the same in-out “pairing” occuring associated with identifying

the locations where the tour went in and out of each bubble, the optimal solution

tries to go from node (on boundary) A6 to A5 more directly while our replicas always

intend to go north from city A6 and finally reach A5 after visiting numerous nodes.

2.7 Conclusion

We introduce a general method for improving known algorithms. (i.e., the 2-

opt and 3-opt of the TSP [21]). Although, for definitiveness, we focused on the

TSP, the premise of underlying our method is very general and it may, in principle,

be applied to many other problems. The core concept of our approach is that of

coupling between independent solvers (see Fig. 1.1 and Eq. (2.1)). Such a coupling

between members of an ensemble of solvers (or “replicas”) that collectively seek to

find an optimal solution may substantially improve the convergence to the correct

answer as compared to the prevalent single replica algorithm. This coupling may

be introduced amongst solvers of many types (with these solvers obtained by any

previously known algorithm). We underscore and reiterte that by couplings these

solvers, we may, very significantly, improve earlier results. In the context of the

TSP, we demonstrated that geometrical distance and probabilistic inference coupling

between otherwise independent replica solvers allow local solvers to flee from false

local minima. By doing this, we obtained optimal TSP tours even when single solvers

were unable to find the correct answer. As an example, we showed that while the

bare 3-opt method fails to solve for the examined TSP problems with more than

50 cities (see Table 2.1), by invoking replicas, the 3-opt method can accurately solve

problems up to size of 318 cities (see Fig. 2.10). We furthermore obtained nearly

optimal solutions even for larger systems. For instance, in the att532 example the

replica method led to a solution with 0.7% increase in tour length relative to the
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minimum (see latter part discussion of Section 2.6). Thus, the inter-replica coupling

indeed led to a substantial improvement. Unlike genetic algorithms that involve no

such coupling and simply randomly swap the city nodes among different contending

solutions, our algorithms makes use of replica correlations and inference. Genetic

algorithms fail to solve problems as complicated as those we do. To our knowledge,

the currently best genetic algorithm [26] already falters in atempting to correctly find

the minimal path for a 76 city tour (“pr76”) that we readily solved here (see Table

2.1) and successfully went to far larger city tours. In conclusion, we introduce a new

replica based approach that may be applied to disparate problems beyond the confines

of the particular TSP problem solved here and the clustering and image segmentation

challenges addressed in [5, 8]. Our core idea is that even algorithms that are simple

may be much more potent once inter-replica interactions and inference are invoked.

2.8 Appendix

The geometrical distance coupling step is applied “on top of” a base TSP solver.

Generally speaking, the idea is to alternate optimization of the local solver (k-opt in

the current work) with the GDC step to induce the algorithm to escape local minima

and enhance the chances of finding the globally optimal tour solution. GDC seeks

to utilize the distance information implicitly contained in multiple TSP solvers to

enhance the optimization performed by a base algorithm.

For illustration purposes, the following discussion uses only five replicas which are

labeled a, b, c, d, and e. We then represent a candidate tour solution as a string of

N cities,

Replica a: tour: a1, a2, a3, . . . , aN

Replica b: tour: b1, b2, b3, . . . , bN

Replica c: tour: c1, c2, c3, . . . , cN

Replica d: tour: d1, d2, d3, . . . , dN

Replica e: tour: e1, e2, e3, . . . , eN
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where each replica tour correspondes to a permutation of the integers (1, 2, 3, 4, . . . , N).

The GDC algorithm is given by the following steps:

1. Determine the most common edge among all replicas:

(a) Randomly select a “standard” reference city from 2, 3, 4, 5, . . . , N−1. Cycle

each replica order so it includes the standard city as the first element. The

five example replicas have the following configurations:

Replica a: S, a2, a3, . . . , aN

Replica b: S, b2, b3, . . . , bN

Replica c: S, c2, c3, . . . , cN

Replica d: S, d2, d3, . . . , dN

Replica d: S, e2, e3, . . . , eN

where a2, b2, c2, d2, e2 are the neighbors of S in the corresponding replica.

(b) Determine the most common edge among all replicas. That is, find which

of the five links (S − a2, S − b2, S − c2, S − d2, S − e2) appears the most

frequently and flag the corresponding replicas. Let’s call the most common

nearest neighbor city “S ′”. Suppose there are three replicas containing this

link S − S ′:

Replica a: S, S ′, a3, . . . , aN

Replica b: S, S ′, b3, . . . , bN

Replica c: S, S ′, c3, . . . , cN

(c) Calculate the average position for every N cities. For example, replica a

has a long link: S − S ′ − a3 − a4 − · · · − aN−1 − aN . We can know the

distance from a specific city (say a4) to the first city S. For the relevant

replicas (replicas a, b, and c in this example) calculate the average value

of the distance of all cities to the standard city S.

2. For replicas that share an identified common edge, attempt to move a random

city to its average position (measured relative to the common edge). For exam-

ple, in replicas a, b, and c, we already know the average distance of city a3 to
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S. We compare this value to the distance of all N cities to the standard city,

and we find that the distance of a5 to S is the closest to the average distance

of city a3 to S. If the total tour length after this change is decreased or if it is

increased by less than a specified tolerance, we rearrange the order as follows:

S, S ′, a4, a5, a3, a6, a7, . . . , aN . Similarly, we continue to move random cities to

their average positions in all relevant replicas for N-2 times.

The geometrical distance coupling C(A,B) between two replicas (candidate tours

which share at least one common edge) is calculated by

C(A,B) =
1

N

N∑
i=1

Di (2.4)

where N is the number of cities in the instance. Di represents the difference of the

geometrical distance from the ith city to the standard city in tour A and tour B.
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Figure 2.3: (Color online.) A schematic representation common structure segments in solutions of
the Traveling Salesman Problem. Cities in segments i, j, and k as well as i′, j′, and k′ are represented
by spheres and the solved tour path follows the depicted edges connecting the cities.
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Figure 2.4: (Color online.) A cartoon illustrating that the minimal tour will never intersect itself.
In the figure above, a tour containing the two segments AC and BD will always have a shorter
length than a tour incorporating the same four points yet includes the segments AD and BC (that
intersect at a point V ). The proof of this assertion is trivial. By the triangle inequality as applied
to the triangles ∆AV C and ∆BVD respectively, we have AV + V C > AC and BV + V D > BD.
Adding these two inequalities yields AD +BC > AC +BD. Permuting the contour segments (e.g.,
AD,BC → AC, BD) to avoid crossing will always lower the total path length.
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(a) (b) 

Figure 2.5: (Color online.) Typical “one-in-one-out” and “two-in-two-out” bubble.
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Replica

1

2

3

24

Figure 2.6: (Color online.) Schematic representation of common structures that appear in various
replicas. In this example, the candidate common structure contains of three nodes with two links
between them. When the common structure appears in all replicas exactly, we define the probability
to be pj = 1 (pj = 24/24 = 1 here). When the structure does not appear the same in all replicas,
pj < 1. For example, if pj = 1/3, the number of replicas that contain the common structure is eight
(pj = 8/24 = 1/3).
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Figure 2.7: (Color online.) Building on the abstract representation in Fig. 2.6, we plot the exact
probability distribution pj (frequency of common structures identified in each of the different repli-
cas) for each node in the lin318 problem from TSPLIB. Here, there are N = 318 nodes and R = 24
replicas. Every node has two adjacent neighbors, so we define pj as the number of times a common
structure occurs (, the same pair of neighbor cities are connected to node j) among the replicas
divided by the total number of replicas.
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p
Figure 2.8: (Color online.) The vertical axis is the fraction (q) of two links from neighboring sites
that impinge on a given node (j) found by the replicas that appear in the optimal (i.e., shortest
tour) length solution. The horizontal axis is the probability (pj) of finding this common set of two
neighbors connected to the given node j; this probability pj is identical to the vertical axis in Fig.
2.7. As this figure illustrates for sufficiently large values pj , essentially all of the links found by many
replicas also appear in the true optimal solution.
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Figure 2.9: (Color online.) A schematic top view of Fig. 1.3. (a) one possible pairing inside the
bubbles (b) the other possible pairing inside the bubbles. The green solid lines outside the blobs
refer to the common structures shared by all of the 24 replicas while the dotted line inside the blobs
denote the various possible bubble tours. The nodes (A1, A2, A3, A4, B1, B2, B3, and B4) are
located on the boundaries of the shown bubbles. (c) a concrete example of (a).
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Figure 2.10: (Color online.) A specific illustration of how our method is applied to two particular
replicas in our GDC algorithm in Sec. 2.3. The top place denotes the outcome of replica number
7 in our simulations while the bottom plane shows replica number 3. Green nodes are those nodes
that have identical links in the set of all replicas (as in Fig. 2.6, 2.7). That is, nodes that are
colored green have identical neighbors in all replicas. The remaining nodes with links that differ
between the disparate replicas form separate “bubbles” attached to the backbone of common (green)
nodes. We mark the nodes in the different “bubbles” by different colors. The yellow and red nodes
form two bubbles where the tour configurations in the individual replicas differ. Amongst the two
replicas shown, the shorter path in the bubble formed by the yellow nodes appears in replica 3. This
intra-bubble configuration may be implemented in replica 7 to replace the original one shown. Once
this transfer is done, the optimal tour (shown in Fig. 2.11) results.
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Figure 2.11: (Color online.) Optimal solution for lin318 from TSPLIB as discussed in Fig. 2.10.
Following this transfer of the tour segment inside the bubble from replica 3 in Fig. 2.10, the new
replica 7 attains the lowest distance optimal tour for the lin318 problem.
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Figure 2.12: (Color online.) An all replica comparison that was used to produce the common (green)
backbone of links for the 532 node att532 problem. In this example, we found a total of six bubbles
attached to the common backbone. Five of these bubbles were of the “one-in-one-out” type (denoted
yellow above). The nodes in the more challenging “three-in-three-out” type bubble are marked red.
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Figure 2.13: (Color online.) A schematic top view of Fig. 2.12. The green solid lines denote the
common tour path between the replicas. The dotted line inside the blobs denote the possible various
bubble tours. The nodes (A1, A2, A3, A4, A5, and A6) are situated on the periphery of the “three-
in-three-out” bubble marked red in Fig. 2.12.
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Figure 2.14: (Color online.) A comparison between replica 17 and other replicas in the att532
problem (see Figs. 2.12 and 2.13 for notation and color convention). (a) A side by side comparison
between replica 17 (left) and replica 1 (right). Once the shorter intra-bubble path (marked yellow)
from replica 1 is implemented in replica 17, the total tour length in replica 17 is reduced by a
distance difference of size 8. (b) A similar comparison (for a region with another one-in-one-out
“yellow bubble” different than that shown in panel (a)), between replica 17 (left) and replica 1
(right). Coincidentally, here also, swapping the intra-bubble tour in replica 17 with the shorter one
found in replica 1 further lowers the total length by 8. (c) A further analogous comparison between
replica 17 (left) with replica 10 (right). Replacing the initial other intra-bubble tour in replica 17 by
the shorter one found for this bubble in replica 10 leads to a further lowering the tour length by 26.
(d) A comparison between replica 17 (on left) with replica 23 (right) for a fourth “one-in-one-out”
bubble in Figs. (2.12, 2.13). Using the shorter intra-bubble tour found in replica 23 instead of that
initially found in replica 17 leads to a further reduction of the tour length in replica 17 by 14.
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Chapter 3

A Stochastic Replica-Based Voting

Machine Algorithm For Supervised

Learning

3.1 Introduction

Humankind is unequivocally living in the age of “Big Data”. The rapid increase

in connectivity between people, businesses and consumers, the media, and more has

led to an explosion of publicly and privately available data. New information is con-

stantly generated by social media, polling, market surveys, digital cameras, govern-

ment surveillance, smart phones, scientific experimentation, and a multitude more of

the technological sources and innovations of the past few decades. By the year 2020,

the rate of production of digital data is projected to be 44 times as high as the rate in

the year 2009, and the overall amount of available data is projected to be as high as 44

zettabytes (1 zettabyte =1012 gigabytes). This wealth of information available in the

digital ecosystem, combined with ever-increasing information storage capacity, has

incredibly far reaching implications in diverse applications [2, 1, 5, 6, 4, 3]. In order
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to realize the potential of the available data, methods for gaining meaningful insights

must be developed. As the sheer quantity of available data exceeds human compu-

tational capability, efficient computer algorithms must be created and implemented.

This is where the field of machine learning comes into play [7].

We can view machine learning as finding a function f which can describes the

relationship between the input and output. The basic scheme consists of analyzing a

set of input data (“training data”) containing many entities (instances) to which we

want to assign some value (label). Each instance is described by a set of quantities

(features) which, theoretically, allow it to be mapped to a specific label. The problem,

then, is to find a mapping algorithm (model) with parameters which the computer can

fit to the given input data, and subsequently apply to future data (“testing data”).

In this chapter we foucus on the supervised machine learning problem in which the

labels are already known. Since the advent of supervised machine learning a number

of algorithms have been developed. These are of varying complexity and performance,

with some of the most popular being Support Vector Machine (SVM) methods [31,

32]. One may wonder why, in light of the plethora of currently available powerful

methods, should we be concerned with the development of novel algorithms? Crudely,

in addition to the benefits of having a robust “toolbox” of multiple algorithms, it turns

out that existing algorithms are not without their faults.

3.2 Overview of Algorithm

During the last forty years, many of the developments in computer science have

been spurred or influenced by topics and developments in the natural sciences. Indeed,

artificial neural networks take as their basis, the biological networks of the brain, and

have had tremendous success in advancing artificial learning [17, 33]. The study of

spin-glasses by physicists and materials scientists over the last 15 years has led to the

development of Hopfield networks and the addition of thermodynamic and statistical

mechanics principles has to these networks has led to some of the most sophisticated
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Figure 3.1: (Color Online.)‘Phase space’ representation of the feature space and the
mapping of feature vectors to their respective classification label. Most variants of
our algorithm rely on the use of ‘Anchor points’ (see Section 3.3).

learning models to date [19, 20, 21, 22, 23, 24]. It is evident that natural scientific

principles (such as those from biology or physics) may serve as excellent bases for

constructing learning algorithms. Additionally, recent results demonstrate that a

certain theoretical basis may be required in order to enable learning algorithms to

apply to scientific data [25]. With these ideas in mind, we have formulated a novel

algorithm for supervised learning, which takes elementary statistical mechanics and

phase transition theory as its motivation.

In classical statistical mechanics, e.g., [26] each atom carries its own phase space

degrees of freedom: the atomic positions and momenta (thus in three-dimensional

space, the state of each atom is defined by its three position and three momenta

components- i.e., six degrees of freedom). At any given instant, the ‘list’ of all atomic

coordinates and momenta for all the atoms in the system completely specifies its

instantaneous state. Thus, for a system of N atoms, this ‘microstate’ can be repre-

sented as a single point in a 6N-dimensional phase space. The system itself, comprised

of an extremely large number of particles, is macroscopic and can be described us-

ing only a few bulk degrees of freedom (i.e., temperature, pressure, magnetization,

etc.). These bulk degrees of freedom characterize the observable state of the sys-

tem in what is termed the ‘macrostate’. The dynamical evolution of the atoms in
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the system causes the microstate to constantly change, transitioning to new points

in the phase space (new ‘list’ of 6N coordinates). If the system is in equilibrium,

there is no change in macroscopic degrees of freedom with time, and this means that

the microstates correspond in some way to the given macrostate. Additionally, the

properties of the macrostate can be found by taking an ensemble average over the mi-

crostates corresponding to the macrostate. In general, changing external constraints

changes the microstates that are available to the systems atoms, and the macrostate

can also change. This implies that various sets of microstates correspond to specific

macrostates, and this is indeed the case. More specifically, each microstate corre-

sponds to only one specific macrostate. In the phase space picture, then, certain

regions of phase space (corresponding to sets of microstates) will map directly to a

single macrostate, and there will be boundaries in the phase space separating the

different regions.

The above description of statistical mechanical phase space is analogous to what

occurs in classification problems. As discussed in the introduction, classification-

based learning problems consist of instances (the atoms) which are described by a

set of features (positions and momenta). These values of the features for a given

instance are cast into a feature vector which gives the ‘location’ of the instance in

high-dimensional feature space (phase space). Each instance has an associated classi-

fication label corresponding to the set of features, such that certain regions of feature

space map to specific labels. The goal of the learning algorithm is to find the bound-

ary between the classification labels in feature space, so that new instances (which

correspond to some point in feature space) can be appropriately mapped to the proper

label. A schematic is provided in Fig. 3.1.

In order to achieve this goal, we need an appropriate mapping function f(~x), where

~x is a vector representing a particular point in the space of all d attributes (“features”)

go the data. In the statistical mechanical framework, mapping to a specific macrostate

is done via minimization of an appropriate free energy. Once the free energy is

properly extremized, calculating its value for a given point in phase space will allow for

the elucidation of the corresponding macrostate or phase. Twentieth century physicist
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Lev Landau studied free energies that could be expanded in a set of kernel functions

of features (the so-called “order parameters”). The kernel expansion with coefficients

whose values were fixed through optimization could then be applied to determine

which macrostate a region of phase space belonged to [26, 27]. Thus, borrowing from

this idea, since we are interested in identifying classification boundaries, we will assert

that the label, yi of a given instance can be expanded with unknown coefficients, in a

set of kernel functions which take as their argument the feature vector. For a binary

classification problem, the sign of a voting function weighted by different “replica”

functions f determines the classification of the vector ~x.

3.3 The SRVM algorithm in a nutshell

The model is trained using instances with known labels, but typically, the train-

ing data only covers a sparse set of the total feature space. To work around this,

our algorithm uses a ‘reverse ensemble averaging’ technique that randomly samples

the feature space. We generate a stochastic set of v feature vectors and associated

feature space points, which we call ‘anchor points’ and then use their proximity to

training points to assign a classification label. Essentially, we use the known labels

corresponding to training points in feature space (instances) with sufficiently local-

ized kernel functions to attempt to classify the space around the known points so as

to create general mapping functions. We consider a specific input “training” data of

size N points each comprised of d features (expressed as a d− dimensional vector)

for these points {~xi}Ni=1 and the corresponding given correct classification {yi,c}Ni=1.

With these, we will define

yαi,p ≡ fα(~xi) ≡
v∑
j=1

cαj K(~xi, {~χαj }), (3.1)

and aim, as we will describe below, to set yαi,p equal to the known correct classification

yi,c. Here, {~χαj }vj=1 are fixed random vectors (which we will often term “anchor

54



www.manaraa.com

vectors”) that are different for each “replica” α, and K is a stochastically chosen

function. It may, e.g., be any of the below standard functions,

K(~xi, ~χ
α
j ) =



exp
(
− (~xi−~χαj )2

2σ2

)
exp

(
− |~xi−~χ

α
j |

ξ

)
(
|~xi−~χαj |

γ

)
(
a|~xi − ~χαj |

)
1

1+exp(q|~xi−~χαj |)

, (3.2)

where σ, ξ, γ, A, and q are constants that serve as defining parameters for the

(Gaussian, exponential, complementary error function, Airy functions (of the first

kind), and Fermi type distribution) functions that appear above. As we will further

explain, in Eq. (3.1), {fα}Rα=1 is a set of viable functions of the variables ~x (different

specific functions (either of various types (Eq. (3.2)) or, more commonly in our

simplest analysis, functions of a certain general type having yet different fixed vectors

{~χαj }) associated with “different replicas” α) . We may trivially re-express the above

as ~y α = Kα~c α where Kα
ij = K(~xi, ~χ

α
j ). In statistical mechanics, the coefficients in

the expansion function are found by minimizing the free energy, F (possibly subject

to additional constraints as will be discussed later). We may invert the latter linear

equation,

~c α = (Kα)−1~yc, (3.3)

where ~yc is the vector (with components yi,c) of correct classification results and

(Kα)−1 is the inverse of the Kernel matrix. With the aid of Eq. (3.3), we solve for the

coefficients cαn. Typically, the systems that we study are underdetermined. Therefore,

the inverse matrix (Kα)−1 is actually a pseudo-inverse; finding the coefficients cαn
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involves a least squares fit. For each replica α, we minimize a “learning free energy”

Fα =
N∑
i=1

(yαi,p − yi,c)2. (3.4)

Here, yαi,p are the predicted (p) results (as given by Eq. (3.1)) while yi,c, as noted

above, are the replica independent correct (c) classification results that a good algo-

rithm should aspire to uncover. Thus, the coefficients cαj that are calculated for a

given replica α will appropriately map a given “state” ~x to the correct “phase” label

given the phase space sampling information. We repeat the above calculation for

multiple stochastic sets of replicas (R in total) in an attempt to ”reverse ensemble

average” based on knowledge of the actual phase space mapping to appropriately find

the correct divisions. As the mapping functions f are continuous while the classifi-

cation labels are discrete, the output of the mapping function for each replica has to

be thresholded. Once the system is “trained” (i.e., the coefficients cαj are fixed by

Eq. (3.3), we examine what occurs for new “test” input vectors ~x. For the binary

classification cases that will be studied throughout this chapter, we will typically set,

for each replica α,

yα(~x) =

 −1 fα(~x) < 0

1 fα(~x) ≥ 0
. (3.5)

This thresholding can be generalized for multi-class classification by varying the

threshold point, and in general Receiver Operating Characteristic (ROC) curves [28]

can be used to test for the best value of the threshold. Once the output is calculated

for all points in each of the replicas, the overall classification of an instance is found

via voting. The “overall” label of a given instance is found by taking the average

of the values predicted for that instance across all replicas, and then appropriately

thresholding it (as in Eq. (3.5)). That is,

V(~x) =
1

R

R∑
α=1

yα(~x), (3.6)
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where yα(~x) is the predicted label by the α-th replica.The process of voting based on

stochastic replicas allows for the correction of occasional mislabeling due to random

fluctuations, and leads to a more reliable final result.

The specific, equal weight, voting of Eq. (3.6) is one of many possible voting

choices that may be employed. As we will discuss later on, that multiple voting

methods could be used to increase the overall performance. Since the averaging im-

plicit in voting leads to a continuous range of voting outcomes, the same thresholding

methodology of Eq. (3.5) will be employed. We contrasted our results with those

found by SVM.

3.4 Evaluation of the SRVM Algorithm

To assess the performance of the SRVM algorithm, we will apply it to several test

datasets and examine various statistical performance metrics.

To use the SRVM algorithm to fit a model to the data in the datasets considered,

we broke the data up into a training set and a testing set. The training set was used

to fit the model (i.e., solve Eqs. (3.1,3.4)), and the testing set was used to evaluate

the performance of the model. Some of the datasets employed in testing the SRVM

algorithm that are discussed in this chapter came with explicit testing datasets. For

other data sets no explicit test set was provided; in these cases, we applied five-fold

cross validation (CV) techniques to fit and analyze the model. Five-fold CV involves

randomly splitting the dataset into five equal size subsets or folds, and using 4 of these

folds together as a training set and the fifth fold as a testing set, while iteratively

cycling through so that each fold serves as the testing set once. This allowed us

to analyze the performance of the model for multiple folds, as well as report average

performance metric values across all five folds. This five-fold CV was used throughout

to ascertain the accuracy. Unless explicitly noted otherwise, all accuracies that we

report were obtained by five-fold CV.

Throughout, we used various kernels K (Eq. (3.2)) when performing the expan-
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Figure 3.2: (Color online.) The boundary formed by Gaussian Kernel algorithm in
the linearly separable case.

sions of Eq. (3.1). We further examined multinomial forms of particular maximum

degrees nk in each single feature xk,

fα(~x) =

n1∑
m1=0

n2∑
m2=0

· · ·
np∑

md=0

cm1m2···md

d∏
k=1

xmkk . (3.7)

Here, {cn1n2···nd} are constants that may, similar to Eq. (3.1), be determined by Eq.

(3.3) (the minimization of Eq. (3.4)).

We next explicitly turn to the examples that we tested.

• Our first test case is that of our own synthetic data that allow for a simple linear

separation between two sets with non-intersecting convex hulls (the two sets appear

in the upper right and lower left sides in Fig. 3.2). The goal of the algorithm is to

detect this structure and correctly classify different points as belonging to either of

these two data sets. We used Eqs. (3.1, 3.3) with a Gaussian kernel K for v = 50

fixed vectors {~χαj } that were randomly chosen for each of the R replicas; this led
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Figure 3.3: (Color online.) The raw data of the Four-class problem.

to an accuracy (as ascertained by the 5-fold CV) of 100%. Fig. 3.2 illustrates the

distribution of the two data sets and the boundary formed by the Gaussian Kernel

SRVM algorithm. The boundary obtained by our method is a smooth surface- not

a straight line as found by other class classification algorithms that we tested (e.g.,

SVM with a linear kernel, logistic regression, and other linear classifiers); the linear

kernel SVM algorithm similarly achieved an accuracy of 100%.

In the remainder of this chapter, we will focus on far more pertinent non-linearly

separable benchmarks.

• The next data that we test is that of the “Four-class” [30] benchmark- a binary

classification problem having d = 2 features for each of its 862 data points. Fig. 3.3

visually depicts the data on a d = 2 dimensional map. Similar to our first example, the

goal of the machine learning algorithm is to correctly identify the binary classification

of input data (similarly set to be +1 (marked black in Fig. 3.3) or -1 (red)). We

obtained a perfect (i.e., 100%) accuracy when applying SVM with a radial kernel. We

studed this system with our SRVM method with the multinomial kernel of Eq. (3.7).
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Figure 3.4: (Color online.) The accuracy of the multinomial variant of our SRVM
algorithm for the Four-class problem. Here, n1 denotes the highest power (of any of
the features xk) in the multinomial expansion of Eq. (3.7).

Fig. 3.4 demonstrates how the prediction accuracy varies with the multinomial order

n1(= n2 = · · · = nd). In the tested range, is monotonic with increasing polynomial

order. When the multinomial order n1 = 11, the accuracy is 100 %. Figures 3.5,

3.6, and 2.9 provide the boundaries found when n1 equals 3, 5 and 7 respectively.

We see that when n1 = 7, a smooth boundary between the two classes results. We

similarly applied our algorithm with a Gaussian kernel K to the Four-class problem.

We first discuss the single replica results. The number of fixed vectors v in Equation

3.1 plays a important role in predicting the results. We initially randomly produced

v = 50 fixed vectors (less than a tenth of the number of data set points). This led

to an average accuracy of 99.09%. Reducing the number of fixed vectors to only

v = 10 resulted in an accuracy decrease to 81.18%. In this and other instances, we

saw that (not unexpectedly) when the number of fixed vector became too small, the

prediction accuracy diminished. In Section 3.4.1, we will discuss this trend in greater
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Figure 3.5: (Color online.) Boundary predicted by the multinomial kernel algorithm
for the Four-class problem when n1(= n2) = 3. The signifiers B and D represent the
+1 and -1 classes respectively. F denotes the boundary between these two classes as
determined by the SRVM to this cubic order.

depth. As discussed in Section 3.3, the SRVM combines the single replica results via

voting (Eq. (3.6)). To avoid a gridlock when performing such a vote, we chose the

number of replicas R to be an odd number (we picked R = 7 here). Each replica α

corresponds to a possible predictor yα that is related to a different set of fixed vectors

{~χαj }. Averaging over replicas (Eq. (3.6)) produced an accuracy of 99.76%.

• The subsequent test case is that of “Svmguide1” benchmark [30]. This well

studied benchmark problem (originating from astroparticle physics) consists of train-

ing file and testing file (i.e., there is no need to perform CV). The number of data

points in training file and testing file are, respectively, 3089 and 4000; each data point

has d = 4 features. Optimizing and using the best parameters for a radial basis SVM

kernel enabled a 96.9% accuracy. We applied our SRVM algorithm with a polynomial

kernel (see Fig. 3.8) to this benchmark. Contrary to the Four-class problem, the

accuracy initially grew with increasing polynomial order n1; however, at larger n1
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Figure 3.6: (Color online.) Boundary predicted by polynomial kernel algorithm for
the Four-class problem when n1 = n2 = 5 in Eq. (3.7). As before, B and D mark
the +1 and -1 classes respectively. The curve F denotes the boundary found by the
SRVM algorithm between these two classes to this quintic order.

the accuracy diminished. The peak prediction accuracy for the test data is 96.6%.

In Section 3.4.4, we will discuss how the best value of n1 may be ascertained from

replica overlap (without being given the results for the test data). We further applied

the Gaussian kernel algorithm to the Svmguide1 problem and tested three different

value of number of fixed vectors (v = 50, 100, 200). In single replica tests, the highest

accuracy (95.6%) was realized for v = 100 fixed vectors. Setting v = 50, 200 gave

rise to accuracies of 94.62% and 94.98% respectively. Using R = 7 replicas in the

Gaussian kernel algorithm, mproved the accuracy to 95.8%.

• The “Liver disorder” data set [30] is a benchmark problem that has 345 data

points which has d = 6 features for each input. It has no testing file so that we

performed the CV tests as before. We first investigated the performance of SVM.

Optimizing the SVM parameters in a radial basis enabled an average CV accuracy

of 71.88%. Next, we applied the (n1 = · · · = n6 = 3) multinomial SRVM. This led
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Figure 3.7: (Color online.) B and D represents the +1 and -1 classes respectively
in the Four-class data set. The curve F denotes the boundary between these two
classes to this Boundary predicted by the SRVM algorithm when using a multinomial
of order n1 = n2 = 7.

to an average CV accuracy of 65.5%. Lastly, we applied the Gaussian kernel SRVM

algorithm to the problem. We found the optimal number of fixed vectors is v = 80.

This led, for the single replica variant, to an accuracy of 66.29%. We then couple

different replicas (R = 7, 15, and 21). The results illustrate that replica voting indeed

improves the accuracy. Specifically, R = 7 replicas led to an accuracy of 68.40%. In

the case of R = 15 replicas, we achieved an accuracy of 66.97%. For R = 21, the

average CV accuracy became 68.40%.

• As another example, we also tested the Heart disease from UCI machine learning

repository database [31]. This is a binary classification problem consisting of 270 data

points with d = 13 features. For calculations in this chapter, the data will be scaled (to

be between [−1, 1]). We will present various aspects of our results for this prominent

benchmark in later sections.

• The results from the Statlog Australian Credit Approval dataset [32] (hereby
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Figure 3.8: (Color online.) The accuracy and training set accuracy (the ability of
the kernel to reproduce the training data) when using different order multinomial
kernels (Eq. (3.7)) in the SRVM algorithm when applied the Svmguide1 data set.
For comparison, we provide in the top panel, the optimal result found the SVM
algorithm.

abbreviated to “Australian”) will, similarly, also be presented. This benchmark is

comprised of 126 binary-classified instances with 309 features and, as we will demon-

strate, possesses characteristics which make it an excellent representative dataset.

When analyzing datasets using classification or regression algorithms, it is im-

portant to begin by preprocessing the data to be studied. In many datasets, it is

common to have various instances which are missing values corresponding to certain

features. Numerous methods exist to deal with missing values through various types

of imputation [33, 34]. Typically the act of imputing data for missing values is itself

a learning step, which inherently adds complexity to the analysis process. In the

datasets studied here, the number of instances with missing values was small enough

that these instances were discarded.

In addition to handling missing values, the preprocessing step also typically in-
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volves scaling of the data, so that the values corresponding to a given feature are

of the same scale as all of the other features. This suppresses any effects of a fea-

ture with high variance and magnitude, dwarfing features with smaller variances and

magnitudes. The three main feature scaling types are normalization of the range of

values for a given feature such that they have a mean of zero and variance of one,

scaling to the range [0,1], and scaling to the range [-1,1]. In Section 3.4.3, we will

test whether there is any statistically significant difference in the performance of the

algorithm with different feature scaling types, but will employ normalization scaling

unless otherwise noted. The data presented for the Australian data set are scaled to

[-1,1].

3.4.1 Accuracy dependence on replicas and anchor vectors

When evaluating the performance of a binary classification model, the first step is

typically to measure the accuracy of the classifier when applied to the testing data of

known labels. The accuracy is simply defined as the percentage of correctly labeled

instances in the testing set. In analyzing the LSVT voice rehabilitation dataset [29],

we primarily used the Gaussian kernel of Eq. (3.2). A priori, the spread (σ) of

this Gaussian may assume any value. We observed that setting σ =
√
Nfeatures

yielded the best results. Consequently, this was the value used in our analysis. We

employed the five-fold CV and examined the average accuracy, Ā, across all five

folds for various numbers of anchor points (v) and replicas (R). The results of this

analysis are presented in Fig. 3.9. In panel (3.9a), we show a 3D surface plot of the

average accuracy as a function of the number of anchor points and number of replicas.

In panels (3.9b) and (3.9c), we show projections of the 3D plot for constant v and

R, respectively. It is evident from these plots that the accuracy quickly reaches an

asymptotic value with increasing replica number. Once a maximum is reached, further

changes in the number of replicas have little net impact on the accuracy. Additionally,

it is evident that (regardless of the number of replicas R used) the accuracy increases

rapidly with number v of anchor points, levels off at a maximum, and then decays

with further increasing v. The decay of average accuracy with increasing v beyond a
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certain value is indicative of over-fitting. Analysis of the accuracy data presented in

Fig. 3.9 suggests that a maximum accuracy of Ā=88.9% for the LSVT dataset occurs

at v = 35 and R = 29.

We now turn to a similar analysis for the “Heart” dataset [31]. In order to find

the optimal number of anchor points for these data, we changed the number of anchor

points v from 10 to 250 in increments of 10 (see panel (a) of Figure 3.10). The resulting

accuracy was averaged over 10 different sets of R = 31 replicas analyzed with a 5

fold CV. The highest accuracy was achieved when v = 40. A further minimum in

the accuracy appears for v ∼ 220 anchor points. For anchor points as low in number

as v = 12, our procedure yields an accuracy above 80% (a value quite close to the

highest obtained accuracy of 82% that we obtained when using v = 50 anchor points).

In panel (b) of Figure 3.10, we show the effect of increasing replica number on the

average accuracy in Heart example. The range of the number of replicas is quite wide,

11 ≤ R ≤ 201. Both curves in this panel (corresponding to the average accuracy and

the replica overlap) display an oscillatory behavior about the averaged result and the

amplitude of oscillations decreases as the number of replicas R increases. Already

for R = 31 replicas, we achieved an average accuracy of 82%. Considering that the

highest accuracy the we reached (as is seen in the graph) is 83.3% for R = 51 replicas,

in further analysis of the Heart dataset, we used the more modest number of R = 31

replicas.

An important point that we will underscore and reiterate throughout this work

(and discuss, more specifically, in Section 3.4.4), is that we may determine the opti-

mal number of replicas R, number of anchor points v, and any other undetermined

quantity by noting when the average inter-replica is (near) maximal as a function of

these parameters.

We return to our analysis of the Australian dataset. The dependence of accuracy

on number of anchor points is tested on the Australian dataset with Gaussian kernel

models with replica number R = 5. Each point of the plot is the average of 20

randomly generated models; see Fig. 3.11(a).

We observe that as the number v of fixed vectors is increased, initially the fitted
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(a) (b)

(c)

Figure 3.9: (Color Online.) Tests
of the accuracy of the SRVM algo-
rithm (with a Gaussian kernel) to the
LSVT data set. (a) 3D surface plot
of the average accuracy (ascertained
by 5 fold CV) as a function of the
number of anchor points, v, and the
number of replicas, R. (b) The 2D
projection of this 3D plot (a) into the
accuracy-anchor point plane with con-
stant replica number, R = 29 to show
accuracy as a function of number of
anchor points. The accuracy initially
increases with more anchor points; be-
yond a threshold maximum value at
v = 20, the accuracy drops (due to
overfitting). (c) A projection of accu-
racy surface of (a) into the accuracy-
replica plane with constant number of
anchor points, v = 35 in order to high-
light the dependence of the accuracy
on the number of replicas. The accu-
racy initially rises, very rapidly, with
an increase of the number of replicas
and then nearly saturates.
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Figure 3.10: (Color Online.) Accuracy of the SRVM algorithm (with a Gaussian
kernel) when applied to the Heart dataset. (a) Graph of the average accuracy as
a function of the number of anchor points v and number of replicas R = 31. (b)
Plot of the average accuracy as a function of the number of replicas, R when the
number of anchor points is held fixed at v = 50. In Section 3.4.4 we will define and
analyze inter-replica overlaps (the one plotted here is the normalized variant of Eq.
(3.10)). As seen here, the average replica overlaps correlate with the accuracy of the
predictions.

Figure 3.11: (Color Online.) Accuracy tests for the Australian dataset. We show a
(a) Plot of average accuracy as a function of the number of anchor points v for a fixed
small number of replicas (R = 5), and (b) plot the average accuracy as a function of
the number of replicas, R for v = 50 anchor points.

68



www.manaraa.com

Data Set Classes Number of Instances Number of Features SVM SRVM
LSVT 2 126 309 0.873 0.889

Advertisement 2 3279 1558 0.973 0.963
Australian 2 690 14 0.853 0.863

Heart 2 270 13 0.825 0.824
Four-class 2 862 2 1.00 1.00
Svmguide1 2 3089 4 0.969 0.966

Liver-disorders 2 345 6 0.718 0.684
Breast-cancer 2 683 10 0.942 0.945

Table 3.1: Summary of the Optimized Accuracy for both (a) the standard SVM al-
gorithm (after finding the best parameters for the different data sets) and (2) our
SRVM algorithm for three different data sets of varying class and instance number.
Generally, the accuracies for both methods are comparable. The virtue of the SRVM
method (apart from being systematically able to detect optimal parameters by exam-
ining the inter-replica overlap) is that the SRVM suffers from far less data bias that
SVM; this will be made later in the text and in Table 3.4.

model becomes more sophisticated and the prediction accuracy rises rapidly. This

shows that the model can be quite accurate even with a low number of fixed vec-

tors. After a certain point, increasing the number of fixed vectors v starts leading to

over-fitting and the prediction accuracy drops, however the drop is rather gradual,

indicating that the model is robust against overfitting.

The dependence of the accuracy on the replica number R was tested in the Aus-

tralian dataset by performing 50 five-fold CVs and taking the average accuracies

across the SRVM results with v = 50 anchor points for the Gaussian kernel and in-

vestigating the results when the number of replicas R was varied from 1 to 89. The

results are plotted in Fig. 3.11(b).

In addition to assessing the accuracy of the SRVM algorithm, it is important to

compare its performance to established learning algorithms and to try and quantify

any relative advantages and/or deficiencies. To that end, as we noted earlier, we took

the Support Vector Machines (SVM) algorithm [31, 32] as a baseline for comparison.

For the LSVT dataset, we used a ‘brute force’ method of finding the optimal parame-

ters for this contender to our method- the SVM model- by running it for all values in

a grid in parameter space. Once the optimal parameters were found, it was observed

that the maximum accuracy for SVM was 0.873. The difference in accuracy between
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our SRVM method (in which optimized parameters were found by replica overlap not

by comparing to the solution) and the standard SVM algorithm (now optimized to

achieve highest accuracy) is 0.016. This difference is not statistically significant, so

the relative advantage of either method might not be immediately clear.

To dig further into the comparison, while simultaneously exploring the SRVM

performance on a deeper level, we next examine the runtime of both algorithms. We

ran the SRVM algorithm on the LSVT dataset for various values of v and R. The

runtime is considered to be the time that it takes to calculate the average CV accuracy,

and does not include finding the optimal number of parameters, or preprocessing

steps. Figure (3.12a) shows a 3D surface plot of the runtime versus the number of

anchor points and replicas. In figures (3.12b) and (3.12c), the runtime is exhibited

as a function of the number of anchor points v and the number of replicas R. The

data make clear that the runtime increases linearly with increasing v and R. This

observation suggests that it is possible to find the runtime at low numbers of both

variables in order to assess how long a run will take with larger values.

The general optimization of model performance involves maximizing accuracy

while simultaneously minimizing the necessary runtime. Therefore, it would be ben-

eficial to have a measure of the compounding of these two goals. To assess the inter-

section of accuracy and run time, we can define a metric which we call the coefficient

of performance, τ , which we define as

τ ≡ Ā

trun
. (3.8)

This metric allows for an efficient via for simultaneously looking at optimal accuracy

and run time. Using the results of the runtime and accuracy measures discussed

above for the LSVT dataset, we calculated the values of τ as a function of v and R.

Detailed results highlighting various aspects are shown in Figs. (3.13a,3.13b,3.13c).

It is clear that the COP decays as a function of both the number of anchor points

v and the number of replicas R. This is consistent with the linearity of the runtime

and the asymptotic behavior of the accuracy. Locating the ‘knee’ in the COP data,
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(a) (b)

(c)

Figure 3.12: (Color Online.) LSVT
data set. (a) 3D surface plot of SRVM
runtime as a function of the number of
anchor points v and number of repli-
cas, R. (b) Projection of runtime sur-
face of (a) into the accuracy-anchor
point plane with constant replica num-
ber, R=29 to show runtime as a func-
tion of number of anchor points. (c)
Projection of runtime surface of (a)
into the accuracy-replica plane with
constant number of anchor points,
v=35 to show runtime as a function
of the number of replicas. It is clear
that in both cases, the runtime scales
linearly with both parameters, allow-
ing for prediction of runtime from from
small parameter samples. If it known
that many coefficients (a single coef-
ficient is associated with each anchor
point) will be needed in Eq. (3.1) then
one may estimate the requisite run-
time of anchor points from the known
runtime from smaller v.
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(a) (b)
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Figure 3.13: (Color Online.) Analysis
of the LSVT data set. (a) 3D surface
plot of SRVM Coefficient of Perfor-
mance (COP) of Eq. (3.8) as a func-
tion of the number of anchor points v
and number of replicas R. (b) Pro-
jection of COP surface of (a) into the
accuracy-anchor point plane with con-
stant replica number, R=29 to show
COP as a function of number of an-
chor points. (c) Projection of COP
surface of (a) into the accuracy-replica
plane with constant number of anchor
points, v=35 to show COP as a func-
tion of the number of replicas. As they
trivially must, the trends for the COP
of Eq. (3.8) in all panels encapsulate
the behavior of both the accuracy (Fig.
(3.9 ) and (near linear) run time (Fig.
(3.12)) dependence on v and R.
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Figure 3.14: (Color Online.) LSVT data set. A defining feature of the SRVM is that
each replica is stochastically generated (leading, a priori, to different results.) To that
add end, (a) we display the average accuracy with v = 30 anchor points for variable
numbers of replicas, simulated 20 times each with different random replica generation
seeds in each simulation. Associated standard deviations are shown as error bars.
(b) Plot of these standard deviations in the accuracy that are associated with runs
for various replica numbers. The monotonic decrease in the standard deviation with
increasing number of replicas demonstrates that prediction results become more stable
with increasing replica number R; when additional replicas (for an increasing yet still
small R) vote, the final outcome becomes progressively more stable to statistical
fluctuations from the stochastic generation of the anchor point vectors. The plot
further makes clear that the standard deviation quickly reaches a leveling-off point
at which further replica increase does not have a statistically significant impact on
stability.

allows for extracting reasonable values of the parameters for the trade-off between

accuracy and runtime.

In addition to calculating COPs for the SRVM algorithm, we also calculated them

for SVM. Broadly, the SVM COP is considerably better than that of SRVM, and this

is entirely due to the fact that SVM runs much quicker. This is likely due to the

fact that the SVM algorithm has been highly streamlined and optimized in various

software packages over the decades, whereas our algorithm is new. It could also be

due to the fact that for all our implementations of our algorithm we computed the

pseudo inverse exactly (Eq. (3.3)) instead of approximating it with methods such as

gradient descent. Further massaging of the algorithm structure will likely decrease

the runtime.
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3.4.2 Stability

A central characteristic of the SRVM algorithm is the use of voting between replicas

to increase the accuracy. Intuitively, one would expect that the number of replicas

and the accuracy should be positively correlated: more replicas give better accuracy.

Another quintessential feature of the SRVM is that the v anchor vectors associated

with each individual replica are generated stochastically. This allows for a robust

classification of new instances. This also means that each run of the algorithm will

be different, with different outcomes possible. Therefore, it is important to examine

the stability of the output. It is expected that for a low number of replicas (R),

the overall vote can change rather dramatically with different runs, so the accuracy

can fluctuate. It is further expected that as the number of replicas increases, the

fluctuations will be suppressed by the presence of more information in the overall

vote. To test this, we ran the SRVM algorithm on the LSVT dataset with v=30

anchor vectors per replica 20 times each, for varying number of replicas. In panel

(a) of Fig. (3.14), we display the average accuracy across all 20 runs with a fixed

number of replicas as this number (R) increases. The error bars in the figure reflect

the standard deviation in accuracy. In panel (b) of Fig. (3.14), we plot the standard

deviation in accuracy versus number of replicas. From the panels in Fig. (3.14),

it is clear that the standard deviation decreases rapidly with increasing number of

replicas and eventually levels off to a roughly constant value. This is consistent

with the earlier observation that the runtime is linear and the accuracy approaches

a leveling off before decreasing. Further, the result implies that beyond a certain

number of replicas, the overall accuracy is largely stable to fluctuations associated

with stochastic generation of anchor vectors, thus alleviating a potential weakness of

the method.

Tie stability was further tested using the Australian dataset by performing 50 five-

fold CVs and computing the average accuracies across models with replica numbers

ranging from 1 to 89. The results are provided in Fig. 3.11. As this figure makes

evident, for this dataset, the average accuracy rises relatively quickly at the beginning

from just one replica and maintains a general monotonic trend as the replica number
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increases. We begin to observe diminishing returns somewhere after 15 replicas. This

is to be expected, as the amount of available information in the dataset is objectively

limited so there is a cap on achievable accuracy. Note that since we do a simple

majority vote, the replica numbers are all odd to ensure that no ties appear during

voting.

One would expect that as the number v of fixed vectors increases, initially the

fitted model becomes more sophisticated and the prediction accuracy rises. After

a certain point increasing the number of fixed vectors starts leading to over-fitting

and the prediction accuracy drops. Using more fixed vectors also results in a slower

algorithm. Therefore it would be very useful if we had a way of estimating how many

fixed vectors are appropriate for a certain problem.

In Fig. 3.11(a), we notice that the curves for both the average accuracy and the

average replica overlap rise rapidly from their values for a single fixed vector (v = 1)

to a nearly flat maximum that appears when the number of around fixed vectors

20 . v . 100; when v & 100, the accuracy begins to taper off due to the alluded to

overfitting. The two curves indeed follow each other closely, supporting the notion of

using replica overlap to estimate the dependence of the expected accuracy on v. We

found similar behaviors for other parameters other than the anchor vector number v.

There are some other outstanding features of the figure: the rapid rise of the two

curves at low fixed vector number shows that the model can be quite accurate even

with low fixed vector number, and the slow tapering off of the two curves indicates

that the model is robust against overfitting.

3.4.3 Impact of pre-processing

In the beginning of this section, we alluded to the possibility that the specific pre-

processing method employed may have an impact on the performance of the SRVM

algorithm. In this subsection, we will examine the impact of preprocessing the data

using feature scaling on our final results. We feature scaled in three different ways:

75



www.manaraa.com

• (1) linearly transforming the data such that domain of each feature over the

entire data set ranges from 0 to 1

• (2) linearly transforming the data such that each feature assumes values in

[−1,+1], and

• (3) normalizing the scaled data with mean 0 and standard deviation equal to

unity.

We examined the average accuracies (and their variances) associated with these

three different preprocessing methods using statistical tests. The results (see table

3.2) demonstrate that one must absolutely reject the null hypothesis H0 that all of

the means are equal. The disparate preprocessing methods definitely lead to different

results. The specific testing of the means were performed both (i) assuming normal

distribution of the averages (the f-statistic) and (ii) without this assumption (the

h-statistic using Kruskall Wallis test [35]). Both tests revealed that the average accu-

racy was not statistically uniform across all methods of feature scaling. To investigate

which methods were different, individual t-tests of the means were undertaken. We

performed three different t-tests [36]. These tests demonstrate that there is no differ-

ence between pre-processings to the types (1,2) (the 0 to 1 and (−1) to 1 scalings).

However, these two cases however are different from the normalization (preprocess-

ing type (3)). The normalization preprocessing tends to be the most accurate of the

three for lower numbers of anchor points (v) and replicas (R). In general, the datasets

that were scaled normally (preprocessing (3)) had higher accuracy with lower num-

bers of anchor points. We further tested that the variances were equivalent using a

Levene test [37]; the results indicated no statistically significant difference between

the variances across all preprocessing methods employed. Overall, these outcomes

demonstrate that one must consider the specific type of preprocessing undertaken,

when assessing the performance of the SRVM algorithm.
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Null Hypothesis Test Statistic p-Value Conclusion
µ1=µ2=µ3 f=4.4542 p=0.0159 Reject H0

x̃1=x̃2=x̃3 h=8.9006 p=0.0116 Reject H0

σ2
1=σ2

2=σ2
3 w=2.1240 p=0.1289 Fail to Reject H0

µ1=µ2 t=2.7440 p=0.0092 Reject H0

µ1=µ3 t=2.7440 p=0.0092 Reject H0

µ2=µ3 t=0 p=1.0 Fail to Reject H0

Table 3.2: Results of statistical hypothesis tests undertaken to assess whether different
pre-processing techniques impact algorithm accuracy for the same sets of parameters
(v and R)

3.4.4 Optimization via replica overlap metrics

When choosing the optimal values of the parameters for a learning algorithm, it is

helpful to have a reference function which does not require the calculation of the

accuracy, which still relays information about model performance. This gives a more

‘fair’ way of choosing the best values of the parameters without a brute force method.

In the SRVM algorithm, because we have many replicas which are voting together

by a simple majority vote, it seems reasonable that some measure of the overlap

between the replicas would be a measure of model performance. Indeed, when all

of the replicas are largely in agreement, it should imply the model is performing

optimally and vice versa. However, it is possible that all of the replicas could be

in agreement, with all of them being incorrect. Therefore, it is important to test

whether proposed replica overlaps are agreement with the accuracy. To test this, we

propose two different replica overlap functions, and test them on the LSVT dataset.

The first overlap function is defined as

O1 =
∑
α>β

~y α · ~y β (3.9)

and measures the total overlap of the predicted labels of all replicas. For each of the

replicas 1 ≤ α ≤ R, the vectors ~y α have g components (where g is the number of

distinct predicted (or, in some rare cases, fitted) data points ~x in each replica α). This

metric may be trivially averaged by dividing by the total number of distinct replica
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Figure 3.15: (Color Online.) LSVT data set. Plot of the two overlaps O1 and O2

(each of which is now scaled by their respective maximum value) of accuracy and the
accuracy as a function number of anchor points v for R=29 replicas. It is observed
that both overlap (associated with almost identical numerical values) scale with the
accuracy of the predictions. As in the other examples that we studied, this correlation
(and others like it) illustrates that instead of having to rely on exact calculations of the
accuracy one may use the overlaps to ascertain the optimal values of the parameters
defining the SRVM model (in this case, the optimal number of anchor points v and
the number of replicas R).
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pairs, i.e., by multiplying the righthand side of Eq. (3.9) by 2
gR(R−1) . A similar, but

computationally more efficient overlap function is defined as

O2 =
∑
α

~y α · ~V (3.10)

which measures the overlap of each replica with the overall vote as determined by

Eq. (3.6). The calculation of Eq. (3.10) requires storing much less information the

overlap defined in Eq. (3.9). Similar to each vector in the set {~y α}Rα=1, the vector

~V has g components (one component (the voted prediction) for each of the g distinct

examined data points ~x). (Similar to Eq. (3.9), an average is trivially calculated

by dividing the righthand side of Eq. (3.10) by (gR).) In Fig. 3.4.4, we plot the

results of the overlap measures of the LSVT dataset. In these panels, the number

of anchor points, v, is plotted on the x-axis with datasets for increasing values of

replica numbers, R, with increasing R being proportional to increasing y-axis values,

shown. The data in Fig. 3.4.4 seems to display the same overall characteristics as

that of the accuracy shown earlier, but it is important we compare them directly. In

Fig. 3.15, we plot the average accuracy, and two overlap functions for R=29 replicas

and various numbers of anchor points, all scaled by their maximum values so as to

be able to fall on the same plot. It is abundantly clear from the data, that the

two definitions of the replica overlap and the accuracy scale in a one-to-one fashion,

making either overlap function an excellent candidate to find the optimal parameter

values without necessitating the calculation of model accuracy. Similar trends are

seen in Figs. (3.10(b), 3.16,3.17, 3.18, 3.19).

In many cases, having some measure of the probability of a point being labeled

correctly is important for identifying the location of classification boundaries. Again,

the existence of SRVM replicas allows for getting a measure of these probabilities. We

can define a third single data point overlap across replicas which can approximate the

probabilities of classification. This allows us to determine whether a given point ~xi

is near a classification boundary, as when result in different labels, the point is likely

near a boundary. We call this single instance overlap the ‘Agreement’, and define it
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Figure 3.16: (Color Online.) LSVT data set. Plot of the overlap functions defined
in Eqs. (3.9,3.10) as a function of the number of anchor points v for various numbers
of fixed replica numbers. The replica number increases along the vertical axis.

as

Ai ≡
1

R
|
R∑
α=1

yαi |. (3.11)

This single instance metric complements the global overlaps of Eqs. (3.9, 3.10).

In general, the overlap Ai increases in tandem with the probability Pi of correctly

classifying a given point ~xi.

The bar chart in figure 3.20 (a) shows how well the predictions of different replicas

agree. The majority of points fall in the last bin (meaning that for most points,

different replicas predicted the same result). We also calculated the corresponding

accuracy for each bin in Fig. 3.20(b). Again it is apparent from the bar chart that

the points with the maximum replica voting agreement have the highest accuracy as

it is expected. As mentioned earlier, the Heart data consists of 270 data points each

of 13 features. Replicas are of 50 points in thirteen dimensions. The average accuracy

after 10 runs of voting is 81.25%. The corresponding accuracy of SVM is 82.4%. We

see our prediction algorithm is acting very close to SVM.

The correlation between availability and classification accuracy was also investi-

gated using the Australian dataset. The Australian data set was used to demonstrate

the correlation between replica overlap and datapoint prediction accuracy. For this

test, we used Gaussian kernel models containing 31 replica with 50 anchor points

each. A total of 10 models were generated, and a 5-fold cross-validation on the data
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Figure 3.17: A comparison between (1) the average replica overlap (as computed
via the averaged variant of Eq. (3.10)) and (2) average accuracy of a model with
R = 5 replicas for the Four-class benchmark when using the SRVM algorithm with a
Gaussian kernel. The horizontal axis corresponds to the number of anchor points v.

set was ran on each model. For each 5-fold cross-validation, every data point in the

data set will be a test data point exactly once. Any test data point xi was classified by

its replica agreement Ai. In Fig. 3.21, we binned the test data points based on their

agreement values (multiplied by replica number (R = 31) for clarity of presentation)

and calculated an aggregate accuracy for each bin. We see that indeed the data points

with higher replica agreement in general are also being predicted with higher accu-

racy, showing a clear positive correlation between replica agreement and prediction

accuracy. Another feature from Figs. (3.11, 3.25) is that the vast majority of data

points have good replica agreement. In Figs. (3.22, 3.23, 3.24), we report on similar

tendencies found for the Four-class, Svmguide1, and liver disorder benchmarks.

The Australian dataset was also used to show that the average agreement across

the dataset is also a useful replica overlap function. Using the same procedure for

Fig. 3.11, we used Gaussian kernel models with varying number of anchor points
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Figure 3.18: Plotted on the same axes are (1) the average overlap between different
pairs of replicas (calculated with the replica averaged variant of Eq. (3.10)) and (2)
the average accuracy as a function of the number of anchor points v. This analysis was
performed for the “Svmguide1” benchmark classification problem with the Gaussian
based SRVM algorithm with R = 5 replicas.

and 5 replicas each, and calculated the average agreement of all datapoints. The

results are plotted with the average accuracy in Fig. 3.25(a), and we see strong

correlation between the average accuracy and the average agreement. If we introduce

the average RMS error as the learning free energy F scaled by the number of data

points: RMS = F/N , we see in Fig. 3.25(b) the average RMS error correlates

negatively with both the average accuracy and the average agreement.

In Fig. 3.26, we show the correlation between averaged replica overlap and av-

eraged accuracy for different number of anchor points. The range of anchor points

runs from 10 to 500 while the number of replicas are being kept fixed at 31. Similar

to the Australian and other data sets that we analyzed, both the replica overlap and

the accuracy closed tracked one another (and further correlated with the value of the

energy function of Eq. (3.4)). Here, these quantities were non-monotonic as a func-
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Figure 3.19: The results of the SRVM algorithm for a Gaussian kernel with R = 5
replicas for the “liver disorder” dataset. Similar to Figs. (3.17,3.18), we plot the
inter-replica overlap and accuracy as a function of the number of anchor points v on
the same set of axes.

tion of the number of anchor points. The “energy” curve is this figure corresponds

to the average of Eq. (3.4) over 31 different replica realizations. Five-fold CV was

employed in our tests for the accuracy of the predictions. Perusing this Figure, we

see that the averaged penalty function of Eq. (3.4) becomes minimal when the high-

est inter-replica overlap is achieved and when the predicted classifications are of the

highest accuracy.

In Figs. (3.27, 3.28, 3.29), we similarly demonstrate the correlation between the

found accuracy and the lowest value of the penalty function (or energy) of Eq. (3.4)

for different data sets.
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Figure 3.20: (Color Online.) An analysis of the Heart benchmark via R = 31
replicas. The Heart benchmark has 270 data points. The CV calculations were
replicated 10 times so, overall, 270× 10 = 2700 points were classified. (a) Bar chart
showing the distribution of agreement values of the Heart benchmark data points
across 10 five-fold cross-validations. The rightmost bar denotes the number of points
(1330 out of 2700) that were in nearly the same way by all 31 replicas. The leftmost
bar corresponds to the 313/2700 data points that were classified with a minimal
Agreement (Eq. (3.11)) amongst the 31 replicas. (b) A histogram of the average
accuracy of the Heart benchmark data points in each bin of the Agreement values.
Higher Agreement positively correlates with a higher average accuracy.

Figure 3.21: (Color Online.) “Australian” data set. (a) Bar chart showing the
distribution of agreement values of the data points across 10 five-fold cross-validations.
(b) Bar chart showing average accuracy of the data points in each bin of agreement
values. Higher agreement positively correlates with higher average accuracy. On the
horizontal axis, we plot the un-normalized sum of Eq. (3.11), i.e., |

∑R
α=1 y

α
i |.
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Figure 3.22: (Color online.) Distribution of data points and accuracy for the Four-
class benchmark. On the horizontal axis, we plot the“absolute number of votes”- the
un-normalized sum of Eq. (3.11), i.e., |

∑R
α=1 y

α
i |. The “distribution of data points”

marks which fraction of the data points have a given “absolute number of votes” (thus
the sum of this distribution over all possible “absolute number of votes” is unity).
The accuracy curve is, generally, monotonic in the replica overlap as is manifest here
by the “distribution of data points” fraction.
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Figure 3.23: (Color online.) The distribution of data points and accuracy for the
Svmguide1 dataset. See the caption of Fig. 3.22 for the definition of the axes and
curves.
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Figure 3.24: (Color online.) The correlation between the replica correlations (“distri-
bution of data points”) and accuracy for the liver disorder benchmark. The definition
of graph is similar to that in the caption of Fig. 3.22.

Figure 3.25: (Color Online.) Australian data set. Each data point is the average over
20 runs. (a) Average agreement and average accuracy with varying number of anchor
points (similar to Fig. 3.11). (b) Average agreement, average accuracy and average
RMS error with varying number of anchor points.
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Figure 3.26: (Color Online.) Heart data set. Each data point is average of 20 runs.
(a) Average agreement and average accuracy with varying number of anchor points.
(b) Average agreement, average accuracy and average RMS error with varying number
of anchor points.

3.4.5 Class imbalance and alternative performance metrics

In Fig. (3.30), we depict the results of a principal component analysis (outlining the

two dominant principal components). This analysis enables us to visualize where our

algorithm fails to find the correct answer for the LSVT data set. As seen in this fig-

ure, while there is no apparent distribution in principal component space of the cases

that we obtained incorrectly, the two classes are massively imbalanced (as is often

the case in classification sets). Other metrics are necessary to compare our results to

those of SVM (and other algorithms). To that end, we briefly regress to the “accuracy

paradox” [38]. This colloquial “paradox” is simple to explain: if the data set given is

heavily imbalanced so that most of the provided data belong to one type, one might

as well just guess the dominant answer every time and miss subtle instances. This

must be taken into consideration. To that end, in Fig. (3.31), we provide a confusion

table and look at how well we perform while qualifying true positives and negatives

and false positive and negatives. The specificity and sensitivity are related to true

positives and false negative rates. This information may be used to compute various

metrics; these measures combine class imbalance, specificity, sensitivity, and perfor-

mance into one number. Notable metrics in Table 3.4 are those reflecting Cohen’s

κ. In terms of these κ values. the superiority of SRVM over SVM is made apparent

(by a very large statistically significant difference). The statistical measures indicate

88



www.manaraa.com

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

pe
rce

nta
ge

n u m b e r  o f  f i x e d  v e c t o r

 e n e r g y
 r e p l i c a  o v e r l a p

f o u r c l a s s

Figure 3.27: A comparison of the average replica overlap and average energy of a
model with 5 replicas for the Four-class data set.

that SVM does a lot more “guessing” that the SRVM algorithm and tends to become

“lucky” by predicting the dominant class more often. This is to be expected since

SVM segments feature space with a specific kernel at a hard cut and only considers

points on a specific boundary that need to be carefully classified. By contrast, the

distinguishing attribute of SRVM is that numerous stochastic replicas are considered-

a characteristic that tends to lead to less bias. Taken together, the Cohen’s κ values

[39], along with the F1 [40] (that does not take into account true negatives) and CM

(Matthews Correlation coefficients) [41] metrics illustrate that SRVM exhibits a sta-

tistically significant advantage over the SVM algorithm insofar as the lack of inbuilt

class imbalance bias is concerned.

3.4.6 Layered voting: multiple kernels and recursive learning

We can add hidden layers to the SRVM by allowing different kernels to all vote. Each

kernel predicts an outcome on its own for each instance. We may combine voting
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Figure 3.28: A comparison of the average replica overlap and average energy of a
model with 5 replicas for the liver disorders data set.

results from different kernels to come together by voting anew from the results from

the first (single kernel) votes, see Fig. (3.32). The advantage of this modus operandi is

that we can adjust weights for the different functions. Without adjusting for weights,

instead of Eq. (3.6), one may use the more general average of

Vi =
1

NkR

R∑
α=1

Nf∑
k=1

yαi,k,p, (3.12)

where the predicted value yαi,k,p for replica α is found using Eq. (3.1) with kernel K

belonging to the k−th entry of the list of Eq. (3.2) or other trivial extensions thereof

(and Nf the total number of functions in such lists). The weight of one function may

be adjusted as the calculation proceeds to be higher or lower to increase the accuracy.

Without adjusting for weights, we see in Figs. (3.33,3.34,3.35) that the accuracy, run

time, and coefficient of performance are similar those that we obtained earlier (within

a single layer voting model- the usual SRVM). A trivial extension of Eq. (3.12) is
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Figure 3.29: A comparison of the average replica overlap and average energy of a
model with 5 replicas for the Svmguide1 benchmark data set.

that of the weight adjusted voting,

Vi =
1

R

R∑
α=1

Nk∑
k=1

wky
α
i,k,p, (3.13)

with the weights wk satisfying,
∑Nf

k=1wk = 1.

As we explained in Section 3.4.4, one may aim to find the optimal parameters by

noting when these lead to a maximal overlap between the replicas. Additionally, of

course, one may see when these lead to accurate solutions- yet that either requires

“cheating”- i.e., (1) adjusting the parameters to obtain the known answer or to (2) the

removal of some of the known input data to use it as a CV test (the latter case is non-

optimal since already known data are removed from the training set). At any rate,

testing for overlaps and/or direct accuracies by brute force change of parameters can

be taxing. An alternate approach for determining the optimal parameters and weights

such as those of wk in Eq. (3.13) (and trivial multi-layer generalizations thereof),
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Figure 3.30: (Color Online). The LSVT data set projected into the plane of the
first two principle components, so as to visualize model performance. Data points
denoted with an upward pointing triangle are points with known label ‘+1’ and
downward pointing triangle are those points with known label ‘-1’. Points which
are colored green correspond to points correctly classified by the SRVM algorithm,
whereas points colored red, were incorrectly classified.
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Figure 3.31: LSVT data set. Confusion Tables constructed from three folds of a five-
fold cross validation for the SRVM and SVM algorithms. Overall, the confusion tables
make clear that the SRVM algorithm is slightly less inclined toward false negatives
(FN) than SVM, which is and important result, as the class imbalance is toward the
negative side in the dataset.
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Figure 3.32: (Color Online.) Schematic representation of the layered kernel approach
to the SRVM method. By allowing multiple kernel functions to each vote, after
themselves being obtained via replica voting, adds a hidden layer such that the SRVM
algorithm acts like a traditional neural net. This allows for adding weights to the given
kernels as they vote to increase accuracy. This will be taken up in a future paper.
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Label Fold 1 Fold 3 Fold 5 Average
SRVM Right, SVM Right 18 20 22 20

SRVM Wrong, SVM Wrong 4 2 2 2.67
SRVM Right, SVM Wrong 2 1 0 1
SRVM Wrong, SVM Right 1 0 0 0.33
SRVM Mixed, SVM Right 1 2 0 1
SRVM Mixed, SVM Wrong 0 0 1 0.33

Table 3.3: Number of testing data points corresponding to a given pair of outcomes
for the Gaussian-Kernel SRVM and SVM algorithms across three different folds of a
cross-validation set.

Fold Classifier Sensitivity Specificity Precision κ F1 CM
21em1 SRVM-Gauss 0.727 0.866 0.8 0.56 0.761 0.603

SVM 0.545 0.933 0.857 0.436 0.667 0.533
21em3 SRVM-Gauss 0.75 1 1 0.549 0.857 0.819

SVM 0.625 1 1 0.447 0.769 0.728
21em5 SRVM-Gauss 0.857 0.944 0.857 0.541 0.857 0.801

SVM 0.857 0.888 0.75 0.519 0.8 0.718

Table 3.4: Alternative metrics for assessing the performance of the SRVM and SVM
algorithms. These metrics take into account class imbalance in the training set, and
are therefore a more robust and powerful measure of algorithm performance. The
table makes clear that despite the statistically insignificant difference in accuracy
between the algorithms, the SRVM method is consistently better across all metrics
when class imbalance is accounted for.

somewhat similar to reinforcement learning [42], is to compute the overlap and/or

accuracies for a set of parameters and then recursively use SRVM to extrapolate

and decide on the optimal parameters. Since the accuracies/overlaps are continuous

variables, this task lies in the domain of “regression” (the prediction of an outcome

that is a continuous variable). We next briefly discuss regression more generally.

3.5 SRVR: Regression by Replication

Our natural functions f (and kernels) are continuous functions and thus, on an

intuitive level, are more suggestively related to continuous value prediction (a re-

gression) and not a discrete prediction (classification problems such as those that we
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Figure 3.33: LSVT data set analyzed with layered voting (see Section 3.4.6) with
a uniform weight, see Eq. (3.12). Accuracy as a function of the number of anchor
points v for the Gaussian kernel. The number of replicas is held fixed at R = 29. The
accuracy is slightly higher than that of the single kernel (Fig. (3.9). The accuracy
is expected to increase when the weights of the different voting kernels are optimized
(and not set to a uniform equal values) as they are here).

considered in earlier Sections). As we will explain below, what is important for a

regression solver is to have normal statistical properties. There are no “benchmarks”

that are as clearly defined for continuous regression data as they are for discrete classi-

fiers (where an answer is clearly wrong or right). With this in mind, we examined the

features of the LSVT data set (for which we developed a binary classifier) and tested

to see whether our predictors fα(~x) (sans the thresholding of Eq. (3.5) comprise good

(continuous) regression predictors to the binary data.

The natural regression route for SRVM is to expand in kernels of the full vectors

~x (as in the kernels of Eq. (3.2) employed in the expansion of Eq. (3.1) that we

have used thus far). However, the manner in which a regression is usually performed

for other existing machine learning approaches is different. Instead of expanding in

functions of all d components (features of a vector) ~x, one expand in functions of

individual features, e.g., for d features, one typically posits a function
∑d

l=1 clfl(xl)

(instead of considering functions of whole instance feature vectors ~x); the reason that

this single feature expansion is typically invoked is that multicollinearity is assumed
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Figure 3.34: LSVT data set analyzed with layered voting; see caption of Fig. (3.33).
Run time as a function of the number of anchor points for the Gaussian kernel.

and then this assumption may be consistently tested for. This also allows to test

for the individual significance of a given feature. Rather explicitly, such a common

regression amounts to an expansion of the form

yαi,p ≡ fα(~xi) ≡
d∑
l=1

v∑
j=1

cαlj Kl(xli, {~χαj }), (3.14)

where xli denotes the l-th feature (component) of the vector ~xi.

In our work, we performed regression in both ways (expanding in kernels of the

full d components vectors ~x and expanding in kernels of individual functions of the

single components (single features) xl). We mainly focused on the first one (that

of expanding in functions of the full feature vector ~x as in Eqs (3.1, 3.2)). When

searching for optimal parameters, one has to focus on the mean squared error versus

the generalization error since the mean squared error (as seen in Fig. (3.36)) will

always decrease with more anchor points v. However, the generalization error will

increase dramatically when overfitting occurs beyond a threshold number of anchor

points. Inspecting Fig. (3.36), we may ascertain the optimal number v of anchor

points.

Testing a regression is notably more challenging than assessing the accuracy in a
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Figure 3.35: LSVT data set analyzed with layered voting; see caption of Fig. (3.33).
Coefficient of performance (COP) as a function of the number of anchor points for
the Gaussian kernel.

classification problem. The predicted outcome is clear cut for the discrete variable in a

classification problem; this is obviously not the case for continuous functions. Instead

of seeing whether the “exact” outcome is achieved (an impossible feat for continuous

real numbers), additional, more detailed checks, are necessary. The commonplace

minimization of the sum of square errors is indeed how we find the optimal parameters

(that are used in the plots). The raw sum of square errors is not a useful metric on its

own; it is more of a comparison metric (since it depends on the units and the number

of data points).

In particular, for a regression to perform optimally, aside from predicting results

that are close to the correct answers, its residuals (errors) should be random and

normally distributed about the true population; the residuals should have no auto-

correlation (no bias of one data point influencing another). In Figs. (3.37,3.38), we

provide scatter plots and histograms of the residuals with the mean in red, standard

deviations in blue and green. it is seen that the histograms are very normal. One

may also look at probability plots (Fig. 3.39); apart from skewing at the tails, one

sees good normal residuals. Autocorrelation statistical tests of the w value suggesting

that no significant autocorrelations in the results- no bias in the regression. Multiple
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Figure 3.36: LVST data set. Plot of the mean standard training error (MSE) and
the testing error (GE) for increasing number of parameters in the standard SRVMR
algorithm. The optimal number of parameters corresponds to the value of v where
GE and MSE have the lowest values for a single v. In this case that occurred at
v=250.

layers of voting, the layers do not add up in the same way that they do for ordinary

linear regressions. Indeed, one may not employ R2 as a fair metric. There will a χ2

statistic on the sum squares of errors (and relate to an F ratio).

3.6 Conclusion

In conclusion, we presented a new machine learning algorithm that we call “Stochas-

tic Replica Machine Voting”. The central premise of this approach is that the known

data is fitted to fix the coefficients in multiple stochastic functions. Once these co-

efficients are fixed, predictions are made by the ensemble of these random functions

99



www.manaraa.com

(a) (b)

(c)

(d) (e)

Figure 3.37: (Color On-
line.) Scatter plots of the
residuals vs predicted value
for cross validation of the
SRVM regression algorithm
applied to the LSVT dataset
with v=250 anchor points.
The lines mark the loca-
tions of the mean (red),
σ (blue) and 2σ (green).
It is clear from the scat-
ter plots, that the resid-
uals of the SRVM regres-
sion model are randomly
distributed and fall within
the appropriate values (col-
ored lines) for the normal
distribution, suggesting ac-
curate model performance.
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(a) (b)

(c)

(d) (e)

Figure 3.38: (Color Online.)
Histograms of the residuals
for five-fold cross validation
testing of the SRVM regres-
sion algorithm for the LSVT
dataset with v=250 anchor
points. The vertical lines
mark the locations of the
mean (red), σ (blue) and 2σ
(green). Based on the his-
tograms, the residuals ap-
pear to be roughly normally
distributed with the excep-
tion of some slight skewing
in the tails. This result indi-
cates a strong performance
of the model.
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(a) (b)

(c)

(d) (e)

Figure 3.39: (Color On-
line.) Probability plots of
the residuals for cross vali-
dation testing of the SRVM
regression algorithm applied
to the LSVT dataset with
v=250 anchor points. The
quantiles of the residuals are
plotted against the expected
quantiles of the normal dis-
tribution. With the excep-
tion of minor skewing in the
tails, the quantiles appear
normal, suggesting strong
model performance.

102



www.manaraa.com

as to the correct classification/regression of new data. Each of the functions “votes”

for the predicted outcome. The system then averages over all predictions by weigh-

ing these in a chosen manner. We tested the algorithm’s performance on multiple

known benchmark problems. Overall, we found the accuracy of our algorithm to

be comparable to that of standard well used techniques such as SVM. However, the

optimal parameters in our model are set by using all of the given data (not tossing

away a subset of these and using cross-validation). Rather, the optimal parameters

are found by seeing when the different stochastic functions (the “replicas”) have a

high overlap- a consistency in their prediction regarding the outcome for particular

data. No less notably, due to the intrinsic stochastic character of multiple functions

used, the system is far superior to SVM in avoiding class imbalance bias. Given the

simplicity of our algorithm and its natural extensions, much more work can be done

to further streamline the algorithm and apply it to multiple data sets. Aside from

the numerous sets tested here, two additional materials oriented (binary and ternary)

classification problems were examined in [43].

103



www.manaraa.com

Bibliography

[1] L. Einav and J. Levin, “Economics in the age of big data”, Science Mag., 346,

6210 (2014)

[2] https://www.emc.com/leadership/digital-universe/2014iview/executive-

summary.htm

[3] A. Yildermaz, “Using Big Data to Decode Private Sector Wage Growth”,

arXiv:1609.09067 (2016)

[4] C. L. Philip Chen and C. -Y. Zhang, “Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data”, Information Sciences 275

(2014) 314?347

[5] A. Szalay and J. Gray, “Science in an exponential world”, Nature 440 (2006)

23?24

[6] M. Hilbert and P. Lopez, “The World’s Technological Capacity to Store, Commu-

nicate, and Compute Information”, Science, 332, Issue 6025, pp. 60-65 (2011)

[7] E. Alpaydin, Introduction to Machine Learning, 3rd Ed., The MIT Press, ISBN:

978-0-262-02818-9 (2014).

[8] S. Fortunato, “Community detection in graphs”, Physics Reports 486, 75-174

(2010).

[9] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure

in networks”, Phys. Rev. E 69, 026113 (2004).

104



www.manaraa.com

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding

of communities in large networks”, J. Stat. Mech. 10, 10008 (2008).

[11] Peter Ronhovde and Zohar Nussinov, “An Improved Potts Model Applied to

Community Detection”, Physical Review E 81, 046114 (2010).

[12] P. Ronhovde and Z. Nussinov, “Multiresolution community detection for megas-

cale networks by information-based replica correlations”, Phys. Rev. E 80, 016109

(2009).

[13] . V. Gudkov, V. Montelaegre, S. Nussinov, and Z. Nussinov, “Community de-

tection in complex networks by dynamical simplex evolution”, Phys. Rev. E 78,

016113 (2008).

[14] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks

reveal community structure”, Proc. Natl. Aca. Sci. U.S.A. 105, 1118-1123 (2008).

[15] V. Vapnik, The nature of statistical learning Theory, 2nd Ed Springer, NewYork

(1999).

[16] J.A.K. Suykens and J. Vandewalle, “Least squares support vector machine clas-

sifiers”, Neural Processing Letters 9, 293-300 (1999).

[17] D. J. Livingstone, Artificial Neural Networks: Methods and Applications, Hu-

mana Press (2011).

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, (2016),

MIT Press, Cambridge, MA and London, England

[19] J. J. Hopfield, ”Neural Networks and Physical Systems with Emergent Collective

Computational Abilities”, PNAS 79;2554-2558 (1982)

[20] D. J. Amit, H. Gutfreund, and H. Sompolinsky, ”Spin-glass models of neural

networks”, Phys. Rev. A 32, 1007 (1985)

105



www.manaraa.com

[21] D. J. Amit, H. Gutfreund, and H. Sompolinsky, “Storing Infinite Numbers of

Patterns in a Spin-Glass Model of Neural Networks”, Phys. Rev. Lett. 55, 1530

(1985)

[22] J. J. Hopfield and D. W. Tank, “Computing with neural circuits: a model”,

Science 233, 625 (1986).

[23] H. Sompolinky, “Statistical Mechanics of Neural Networks”, Physics Today 41

(12), 70 (1988).

[24] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, ”A learning algorithm for

Boltzmann machines”, Cognitive Science 9, 147-169 (1985)

[25] A. Karpatne, G. Atluri, J. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly,

S. Shekhar, N. Samatova, and V. Kumar, ”Theory-guided Data Science: A new

paradigm for scientific discovery”, arXiv: 1612.08544 (2016)

[26] K. Huang, Statistical Mechanics, John Wiley & Sons (New York, Chichester,

Brisbane, Toronto, Singapore) (1987).

[27] L. D. Landau, “ON THE THEORY OF PHASE TRANSITIONS”, Zh. Eksp.

Teor. Fiz. 7, pp. 19-32 (1937).

[28] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC,

Informedness, Markedness & Correlation”, Journal of Machine Learning Tech-

nologies. 2 (1): 37-63 (2011).

[29] A. Tsanas, M.A. Little, C. Fox, and L.O. Ramig, “Objective automatic assess-

ment of rehabilitative speech treatment in Parkinson’s disease”, IEEE Transac-

tions on Neural Systems and Rehabilitation Engineering, 22, pp. 181-190, (2014),

Data from: http://archive.ics.uci.edu/ml/datasets/LSVT+Voice+Rehabilitation

[30] https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

106



www.manaraa.com

[31] Statlog (Heart Disease) dataset, Lichman, M. (2013). UCI Machine Learn-

ing Repository [https://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)]. Irvine,

CA: University of California, School of Information and Computer Science.

[32] Statlog (Australian Credit Approval) dataset, M. Lichman, (2013). UCI Ma-

chine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University

of California, School of Information and Computer Science.

[33] K. Lakshminarayan, S. A. Harp, R. Goldman, and T. Samad, “Imputation of

missing data using machine learning techniques”, KDD-96 Proceedings (1996).

[34] Jose M. Jereza, Ignacio Molinab, Pedro J. Garcia-Laencinac, Emilio Albad, Nuria

Ribellesd, Miguel Martin, and Leonardo Franco, “Missing data imputation using

statistical and machine learning methods in a real breast cancer problem”, Arti-

ficial Intelligence in Medicine 50, Issue 2, Pages 105-115 (2010).

[35] W. Kruskal and W. A. Wallis, “Use of ranks in one-criterion variance analysis”,

Journal of the American Statistical Association. 47, 583-621 (1952).

[36] Student (pseudo name of William Sealy Gosset), “The Probable Error of a

Mean”, Biometrika 6 1:1-25 (1908)

[37] H. Levene, “Robust tests for equality of variances”. In I. Olkin, S. S. Ghurye,

W. Hoeffding, W. G. Madow, and H. B. Mann, “Contributions to Probability and

Statistics: Essays in Honor of Harold Hotellin”, Stanford University Press. pp.

278-292 (1960).

[38] https://en.wikipedia.org/wiki/Accuracyparadox

[39] J. Cohen, “A coefficient of agreement for nominal scales”. Educational and Psy-

chological Measurement 20 (1), 37-46.(1960); N. C. Smeeton, “Early History of

the Kappa Statistic”, Biometrics. 41, 795 (1985).

[40] D. M. W. Powers, “Evaluation: From Precision, Recall and F-Measure to ROC,

Informedness, Markedness & Correlation”, Journal of Machine Learning Tech-

nologies 2 (1): 37-63 (2011).

107



www.manaraa.com

[41] B. W. Matthews,“Comparison of the predicted and observed secondary structure

of T4 phage lysozyme”. Biochimica et Biophysica Acta (BBA) - Protein Structure

405 (2): 442-451 (1975).

[42] Richard Sutton and Andrew Barto,“Reinforcement Learning: An Introduction”,

MIT Press (1998).

[43] Bo Sun, T. Mazaheri, J. Scher-Zagier, D. Magee, P. Ronhovde, T. Lookman, and

Z. Nussinov, https://arxiv.org/pdf/1705.08491.pdf

108



www.manaraa.com

Chapter 4

Stochastic Replica Voting Machine

Prediction of Stable Perovskite

and Binary Alloys

4.1 Introduction

In recent years machine learning plays an more and more important role in the

searches of new materials. Machine learning can make such searches far more effi-

cient by systematically pointing to promising materials that may then be fabricated

and tested experimentally. In this chapter, we will focus on the application of our

Stochastic Replica Voting Machine on two kinds of material: Perovskite and binary

alloys.

The first “Perovskite” (CaTiO3) was named after the Russian mineralogist Lev

Perovski. This name is, by now, used to describe an entire class of compounds of

similar stoichiometry and structure [13] (see Fig. 1.5). Numerous, highly techno-

logically important, materials are known display this structure [14]. High tempera-

ture superconductors exhibit Perovskite structure. Amongst their other applications,
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Perovskites are employed as buffer/substrates that are heavily used in epitaxy, high-

efficiency commercial photovoltaic [15], light-emitting diodes, in lasers, and many

other systems, e.g.,[16, 17].

We introduce and summarize our new algorithm and demonstrate its application

to the classification (viable formability) of (1) perovskite type compounds and (2)

the classification of binary compounds. In both cases, we achieve high accuracy.

Our results enable the prediction of new stable perovskites and the properties of

binary compounds. Other works, e.g., [22, 23, 24] study various aspects of perovskites

with existing machine learning algorithms. In the current work, we employed a new

and very general machine learning algorithm (whose details will be reported on in

[21]) and delineated new phase boundaries in the two classification problems that we

investigated.

Our bare binary classifier can be trivially extended to non binary (multi-class)

problems via, e.g., the “One-Versus-Rest” approach [25]. We will detail a 3-class

problem when investigating two atom (“AB”) alloys.

4.2 The Stochastic Replica Voting Machine algo-

rithm

As befits its name, our “Stochastic Replica Voting Machine” (SRVM) algorithm

relies on a voting procedure among stochastically generated classifiers. As we will

explain, these individual classifiers are defined by a kernel that may be of any type:

e.g., a sum of Gaussians or a multinomial. Initially, we “train” the system to predict

the correct answer. The trained system may then subsequently predict the outcome

given initial inputs. Training is performed by adjusting the kernel of each individual

classifier such that it reproduces known results. The ensemble of classifiers is then

given new data and a vote is taken amongst the predictions of the individual classifiers.

The input (“training set”) data for N items that need to be classified is given

in terms of a set of a vectors {~xi}Ni=1 defining the features of the items and their
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corresponding classification σi. If the classification is amongst q different groups, then

classification function is a Potts spin variable whose value σi = 1, 2, · · · , q denotes

the group that item i correctly belongs to. Potts variables may be generally used

as a classification index in numerous arenas, e.g., [27, 28, 29, 30]. The features of

each item are combined into a vector ~x = (x1, x2, · · · , xd). Thus, the Cartesian

components of each vector ~xi are equal to the values of all parameters of the input

data associated with item i (e.g., the values of the individual atomic radii of the ions

forming in a candidate Perovskite material). If numerous features are given for each

data point i, then the dimensionality (d) of the vectors ~xi will be high. The goal

of Machine Learning is to make an educated guess (a “prediction”) as to what the

corresponding classification outcome will be for a new vector ~x for which there is

no a priori correct classification known outcome. Since no additional information is

available, the predicted outcome σ can only be some function F of all supplied input:

the features defining ~x and all known training set data. That is, the underlying

assumption of any Machine Learning approach is that

σ(~x) = F (~x; {~xi}Ni=1, {σi}Ni=1). (4.1)

The natural question is “how may we determine the correct or ‘optimal’ function

F”? Numerous Machine Learning approaches exist. We briefly comment on two

of these. In one important subclass of these, known as “Support Vector Machines”

(SVM), e.g., [31, 32], F is implicitly ascertained by inequalities applied to an assumed

specific function types. In neural network based Machine Learning, in particular in

“deep learning” [33], the function F is formed by a particular hierarchal recursive

structure. Our approach (SRVM) is, in some regards, far more rudimentary than

these and other prevalent models. To illustrate its basic premise, we will consider the

binary (i.e., q = 2) classification problem. Here, σi = 1, 2 and thus σ̃i ≡ (2σi−3) = ±1

naturally classifies any data point ~x into one of two groups (labelled by σ̃i = 1 and

σ̃i = −1). We define F̃ ≡ (2F − 3) and initially consider F̃ to be an outcome of

a vote amongst the predictions of a large ensemble of stochastic functions {Ga}ra=1
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where we term r to be the number of “replicas” in this ensemble. A simple choice for

the functions Ga (that will be investigated in the current work) is one in which they

are a sum of R random Gaussian functions [34]. Thus, we set

Ga =
R∑
j=1

cjae
−(~x−~xja)2/(2σ2

ja), (4.2)

where {cja}Rj=1 are coefficients that we will discuss momentarily. In the most minimal

form of Ga, all standard deviations σja are set to a uniform fixed value, σja = σ.

The centers {~xja} of the Gaussians are randomly chosen in the volume spanned by

the feature space. Thus, for each of the r functions {Ga}ra=1, we randomly choose R

“anchor points” in the feature space volume to be {~xja}Rj=1. The location of these

anchor points differs from replica to replica. That is, we define each replica “a” by

a different stochastic set of vectors {~xja}Rj=1. More comprehensive than the specific

choice of random Gaussians in Eq. (4.2), the functions Ga may be generally chosen

to be of the form

Ga =
R∑
j=1

cjaK
j
a(~x). (4.3)

Here, the kernel (or basis) functions Kj
a may be an arbitrary stochastic functions.

For the Gaussian form of Eq. (4.2), Kj
a(~x) = e−(~x−~xja)

2/(2σ2
ja). Other general kernels

K, different from a Gaussian function, may, of course, be considered. For instance,

another natural (yet typically computationally expensive) choice for the kernel Ka

that we will return to in the current work (reasonable when the outcome likelihood

is expected to be analytic as a function of the features) is that of multinomials in the

Cartesian components of ~x.

During the training phase, we optimize the values of the coefficients {cja}Rj=1 given

the known outcome for the training points i = 1, 2, · · · , N . The number R of the

coefficients required in order to achieve high prediction accuracy, is typically smaller

than the number of training data points, R < N (in most instances, in fact, R� N).

The optimal value of R depends on the nature of data as well as the size of data
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and should be chosen carefully to avoid over-fitting. For each replica, a = 1, 2, · · · , r,

the given training data set translates into linear equations for {cja}Rj=1. Thus, Eq.

(4.3) explicitly reads Ga(~x = ~xi) =
∑R

j=1K
ij
a cja, where Kij

a ≡ Kj
a(~x = ~xi). This

embodies a set of overdetermined (since N > R) linear equations for the coefficients

{cja}. For each of the replicas a = 1, 2, · · · , r, the above relation can be trivially cast

as an explicit matrix equation, Ĝa = K̂aĉa. Here, Ĝa and ĉa are two column vectors

of, respectively, lengths N and R whose entries are, respectively, {Ga(~x = ~xi)}Ni=1

and {cja}Rj=1. The elements of the rectangular N × R dimensional matrix Ka are,

as defined above, given by (K̂a)
ij ≡ Kj

a(~x = ~xi). The coefficients ĉa minimizing the

square sum ||Ĝa − K̂aĉa||2 are given by

cja =
∑
i

(K̂−1a )jiGia. (4.4)

Here, the rectangular matrix K̂−1a (with elements (K̂−1a )ji) is the pseudoinverse of

K̂a. Thus, in the training phase, the goal is to find the coefficient vectors ĉa for each

of the replicas a = 1, 2, · · · , r. With the above values of cja in tow, we may now

predict the classification of a new “test” item ~x different from all prior training data

points (i.e., ~x 6= ~xi for 1 ≤ i ≤ N). That is, we may compute the classification of ~x

as predicted by the r independent replicated stochastic functions, {sgn(Ga(~x))}ra=1

(where sgn denotes the sign function) and then perform a vote amongst all of these

classifiers. The vote then yields the final prediction of the SVRM,

σ̃(~x) = sgn(
r∑

a=1

sgn(Ga(~x))). (4.5)

For the q = 2 classification problem that we considered thus far, the inner sgn

functions in Eq. (4.5) may be replaced by other appropriately chosen symmetric

functions W , i.e., σ̃(~x) = sgn(W (G1, G2, · · · , Gr)); the single condition on σ̃ is that

its value may only be either 1 or (−1) (corresponding to the two possible classes to

which an item ~x may belong to).

Putting all of the pieces together, Eqs. (4.3,4.4,4.5) nearly completely define the
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SRVM program. The kernels Kj
a may, a priori, stochastically be chosen to be of any

particular functional form. Of course, if an existing theory exists then the functional

form of Ga may be more efficiently designed. In the absence of any such information,

one may simply examine the predictions for random kernels Kj
a. There are three

remaining inter-related natural questions:

(1) Is there a particular metric to determine the confidence with which the results

are predicted?

(2) How do we determine the ‘optimal’ number r of the replicas to be used?

(3) Similarly, what sets the number R of kernel functions in Eq. (4.3)?

As we will describe, the answer to all questions may be determined by examining

the overlap of the predictions of the different stochastic replica functions {Ga}ra=1.

Throughout the current work, we will employ a simple variant of the overlap O(~x) as-

sociated with any point ~x whose classification is predicted by the r replicas {G1, G2, · · · , Gr},

namely

O(~x) ≡ 1

r
|

r∑
a=1

sgn(Ga(~x))|. (4.6)

With this definition in tow, we first explicitly turn to question (1). If all replicas yield

identical predictions (and thus O is close to unity), then (as is intuitively natural and

we verified by numerical experiments), this common predicted answer is likely correct.

Analogously, if the replicas are far from a unanimous agreement about the correct

classification (and, consequently, O is much smaller than one) then the predicted

answer cannot be trusted with high confidence. The above rule of thumb enables us

to scan the parameters r and R to find values that are likely to yield optimal accuracy

(questions (2) and (3) above). Typically as the number of replicas r increases so

does the accuracy. However, larger values of r entail increasing computational costs
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with no real benefit. We thus seek sufficiently large r that enable high accuracy.

By contrast, when the number of anchor points (or more general basis functions) R

becomes too large, overfitting leads to increasing errors. There are optimal values of R

that are sufficiently large to capture the characteristics of the data yet not so big that

overfitting occurs. In reality, we may fix r and R to specific values and examine the

replica overlap to ascertain whether the predicted values may be trusted [21]. That is,

when the overlap O is averaged over all new data points ~x (whose correct classification

is not a priori known and that need to be classified by the algorithm) is high, then the

consensus reflected by the average O will suggest that the current parameters r and

R defining Eqs. (4.3, 4.6) enable a correct prediction of the classification problem.

A variant that we will touch on later is that of “an expansion in a box”. For

typical basis functions Kj
a, the functional form of Eq. (4.3) assumes that the outcome

is a generally smooth function of ~x. If the system exhibits “phase transitions” as a

functions of the features (x1, x2, · · · , xd) then such an assumption is void. Instead,

one may fit the training data with a particular function of the form of Eq. (4.3) with

specific coefficients {cja} only when ~x lies in a particular volume, ~x ∈ Ω; different

regions will correspond to different functional forms (i.e., the coefficients {cja} may

change from one region of ~x-space to another). Here, the expansion will be valid only

in a particular “box”. The function Ga will be allowed to change as ~x goes from

being in one domain Ω to another. Thus, in each of the domains {Ωb} comprising

the system (in which the system is assumed to be “analytic”) there will be a different

function Gab (specified by coefficients cjab). In these cases, a natural question is how

to ascertain phase transitions and effectively employ the existence of these volumes.

Our approach here is once again that of noting when the overlap between different

replicas is highest. That is, given a particular test point ~x, we may train the system

with all data that lies in a volume Ω (a “box”) that encloses ~x. We then see when,

as a function of the size ||Ω||, the overlap O(~x) between the replicas for the predicted

outcome at point ~x will be the highest. We employed this approach when the overlap

between the various replicas was small and the our original classification outcome was

less certain.
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The accuracy of Machine Learning classification algorithms is typically tested by

randomly fitting a fraction z of the known data (i.e., using these data for “training”)

and then seeing how well the algorithm correctly predicts the classification of the

remaining data that are not used as training but rather supplied to the algorithm

only as new vectors ~x whose correct classification is known yet not given to the user

but is to be predicted by the algorithm. This process (or training with a fraction

z of the data and testing the predictions on the remaining fraction of (1 − z)) is

repeated over and over again with different ways of splitting the known data into two

subgroups of relative numbers set by a parameter z,

training data points : test data points

= z : (1− z). (4.7)

The accuracy of the predicted classification is then averaged over the many ways of

splitting the data with this ratio between the size of the number of training data

points and the tested points kept fixed. In the accuracy tests that we will report on,

we will follow the prevalent practice of choosing z = 0.8.

4.2.1 Gaussian kernels

In what follows, we provide an explicit example in which the value of R (the number

of basis functions) is determined. In the current context, we seek to find the optimal

number R of anchor points for the Gaussian of Eq. (4.2). Towards this end, we may

plot the average overlap O between different replicas as a function of the number of

replicas r and the number of anchor points R. This overlap enables us to determine

the optimal values of r and R for which O obtains its maximum (or, more generally,

its maxima).

To illustrate the basic premise, we examine the data of the Perovskite classification

problem that we will turn to in greater detail later on. For the time being, we probe

how the average of the overlap O varies as a function of the number of basis functions

used (or anchor points in the case of the Gaussian kernel of Eq. (4.2)). (As remarked
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Figure 4.1: Overlap between different replicas (Eq. (4.6)) when the Gaussian kernel
was in cubic Perovskite classification problem

earlier (see discussion after Eq. (4.2), the anchor points are randomly placed in the

feature space.) As Fig. (4.1) illustrates, the overlap between different replicas is

maximal for R ≈ 60 anchor points. Since the inter-replica overlap is maximal for

this value of R, we suspect using this number of anchor points would result in the

optimal accuracy. The average accuracy that we reached with the Gaussian kernel for

determining stable Perovskite oxides was 94.19 %. This accuracy may be contrasted

with the performance of the current state of the art SVM package [35]; the SVM

method yielded a mean accuracy of 92.53 %.
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4.2.2 Multinomial kernels

As we alluded to earlier, another set of kernels in Eq. (4.3) is afforded by a d−component

vector ~j defining monomials,

K
~j(~x) = xj11 x

j2
2 ...x

jd
d . (4.8)

Here, xk are the Cartesian components (1 ≤ k ≤ d). There are a variety of ways

to produce multinomial based replica. For instance, different rotations in parameter

space may lead to independent multinomials. A general rotation xk → Uh
kk′xk′ ≡ xkh

with Ua a random rotation matrix, will transform the monomial of Eq. (4.10) into

multinomial in which the sum of all powers in each of the individual monomials

J ≡
d∑

k=1

jk (4.9)

is unchanged relative to its value in Eq. (4.10). Thus, if we choose a basis of mono-

mials {K~j
a(~x)} with 0 ≤ jk ≤ p (with a general natural number p) for all 1 ≤ k ≤ d

in one coordinate system xk then an independent basis of monomials is afforded by

K
~j
a = xj11ax

j2
2a...x

jd
da, (4.10)

with jk ≤ p. This is so as the highest power of each of the Cartesian coordinates is

p < J . In Eq. (4.10), {xhk}dk=1 are the coordinates in the rotated basis generated by

Ua. Eq. (4.3) may be used to concoct several replica functions Ga =
∑R

j=1 cjaK
~j
a(~x).

4.2.3 Ternary and multi-class SRVM

Thus far, we focused on binary classification (wherein the sign (Eq. (4.5)) decided

to which of two categories a particular point ~x should belong to. There is, of course,

more to life than only binary classification. In order to classify ~x into one of p > 2

groups, various constructs are possible. One, very rudimentary, design is to iteratively

classify as a point ~x as belonging (or not) to any one of the classes q = 1, 2, · · · , p.
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Such a rudimentary approach emulates the well known “One-Versus-all” (OVR) [25]

technique; this is the what we will adopt in the current work when we will classify AB

solids into one of p = 3 groups (Section 4.4). Specifically, we will start by predicting

the results of an input vector ~x for each of the q possible output values with the

SRVM algorithm that we introduced in the earlier subsections. Similar to the binary

classification, in order construct the pseudo-inverse for the i-th output value bivariate

algorithm, we will set the result of a data point as +1 if it output the i-th output

value, and to be -1 otherwise. Instead of just taking the sign of the outputted results,

we compared the raw values from results. That is, if the output associated with the

vector ~xi as tested against candidate classes q = 1, 2, · · · , p had the highest incidence

of positive values for a particular class q = q′ then the vector ~xi was classified as

belonging to group q′.

4.3 Perovskite formability

In this section we employ SRVM to predict whether candidate ABX3 compounds

form stable Perovskite structures.

The training data that we used [19] has d = 2 features:

(i) The “tolerance factor”,

x1 ≡
rA + rX√
2(rB + rX)

(4.11)

where ri=A,B,X denote, respectively, the radii of the A, B, and X ions, and

(ii) The ”octahedral factor” defined as the ratio

x2 ≡
rB
rX
. (4.12)

The data in [19] consist of 223 candidate compounds of the ABX3 type. Of these

compositions, 34 correspond to stable Perovskite structures and the rest are unsta-

ble structures. (After removing duplicate compounds that share the same tolerance
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Figure 4.2: Classification results using different SVM kernels employing the Libsvm-
3.0 package. [35]

factor and octahedral factor, 188 data points remain, 29 of which form stable cubic

Perovskite structure.) Once the training is performed with input data, we use it

to make the binary prediction regarding the stability of the contending Perovskite

compounds. Following Eq. (4.7), we repeatedly partitioned the data into two ran-

dom subgroups with z = 0.8. Several partitions with this ratio were generated by

the standard cross-validation method in which the data is divided into nearly five

equal parts. Subsequently, four of these five sets are then used together to train the

algorithm and the remaining one fifth of the data is used as a resource of test data

to see how accurate the predictions of the algorithm are. The set that is used as

the test data is cycled through (being chosen to be all of the five nearly equal parts

of the data). The accuracy is then averaged over the predictions made over the five

groups when these are used as test data. The accuracy is further averaged over dif-

ferent random partitions into five groups. Both for comparison as well as in order

to obtain a more comprehensive picture, aside from our own SRVM algorithm, we
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Figure 4.3: The viable region in the x1x2 plane for materials that may form cubic Per-
ovskite structure as ascertained by a multinomial order kernel in the SRVM method
. Here we employed multinomials of three different orders (3, 4, and 5). The region
in which all multinomials predict formability of a cubic Perovskite structure is the
common ”Yes” region.

also employed both the standard Gaussian and polynomial kernels in the well known

SVM method [31, 32]. In Figure 4.2, we provide the results that we obtained by

applying the SVM algorithm for different kernels. In this figure, the region above the

drawn curves (associated with individual SVM kernels) is predicted to correspond to

stable Perovskite structures; in the parameter region below these curves, no stable

Perovskite materials are anticipated. In line with our main dissertation (that of in-

ferring a likely outcome from multiple independent kernels), the region that is above

all drawn curves corresponds to a domain in the x1x2 plane in which we may expect

(with high confidence) stable Perovskite structures. Similarly, in Figures 4.3, 4.4, we

display the results obtained by our SRVM algorithm for, respectively, the multino-

mial and Gaussian kernels respectively (see Section 4.2 and the discussion following
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Figure 4.4: The predicted formability of the cubic Perovskite structure as provided
by the Gaussian kernel. We find the common ”Yes” region by using five different
replicas. These different replicas are produced by randomly choosing 50 fixed vectors
(see text).
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Eq. 4.2 for a description of replicas in the Gaussian case). The designations of “Yes”

and “No” reflect the predictions of the algorithm regarding the viability of putative

compounds of an ABX3 type composition to form stable Perovskite structures. In

Figure 1.6, we overlay (with different levels of resolution in the two panels) the pre-

dictions of the SVM method and our SRVM algorithm with multiple kernels/replicas.

The shaded region in Figure 1.6 is the one in which all methods/replicas/functions

predict that stable Perovskite structure should form. With this region in hand, all

candidate ABX3 materials (of the correct chemistry to allow such a composition)

with tolerance and octahedral factors that lie in the shaded area are predicted to

be stable Perovskites. Some compositions lie near the boundary and do not enable

(insofar as our approach is concerned) a definite prediction regarding new Perovskite

structures. Two such candidates are EuZrO3 (x1 = 0.857, x2 = 0.514) and EuHfO3

(x1 = 0.861, x2 = 0.507). The location of these new potential stable Perovskite

structures is highlighted in panel (b) of Figure 1.6. With z = 0.8, the SVM algo-

rithm achieved an accuracy of 92.52%. By contrast, the SRVM algorithm obtained

an accuracy of 94.14 % with a multinomial kernel (here two different multinomials

(where different order multinomials were used as replicas) and we further employed

the “expansion in the box” construction) and an accuracy of 94.19% with a Gaussian

kernel (here we employed 11 replicas each having randomly chosen anchor points).

4.4 Ternary classifications of AB solids

We next turn our attention, using the data of [36], to the classification of binary

solids [26] (of chemical composition AB) into one of q = 3 groups (denoted W, Z or R

[26, 36]). Similar to Section 4.3, we applied both the standard SVM technique with

the multi-class variant our SRVM approach (see Section 4.2.3) with multinomial and
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Figure 4.5: Overlap between different replicas (Eq. (4.6)) with Gaussian fit in the
classification of the AB solids.

Gaussian kernels. We employed two commonly used figures of merit as features,

rσ ≡ rAs + rAp − rBs − rBp ,

rπ ≡ rAp − rAs + rBp − rBs . (4.13)

Here, rAs , rAp , r
B
s and rBp denote the pertinent radii for an electron bound to the A or

B ion that is in an s or p orbital.

In the Gaussian approach, we employed the sum of R = 30 individual Gaussians

(associated with different anchor points). The general behavior of the inter-replica

overlap is displayed in Figure 4.5 in which it is seen that the overlap becomes max-

imal at R ∼ 30. The final classification for each data point was determined by the

group for which a given data point appeared most frequently out of the five replicas

employed. The cross-validation accuracies (as ascertained by Eq. (4.7) for z = 0.8)

that our SRVM algorithm obtained for the Gaussian and multinomial kernels were,
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respectively, 92.72% and 90.90%. These values were lower than the accuracy achieved

by an SVM algorithm with a radial kernel (that we found to be 94.54%). In Figure

1.7, we provide the phase boundaries (between the W, Z, and R phases) as ascer-

tained by SVM (see the solid curves therein) alongside the boundaries determined by

our SRVM method (the domains of the different phases as predicted by SRVM are

marked by different colors).

4.5 Conclusion

In this work, we introduced and implemented a new classification algorithm to

classify various materials. In particular, we investigated (1) the formability of per-

ovskite type compounds (a binary classification problem) and (2) classified AB type

systems (via ternary classification). A more detailed description of our new algorithm

appears in a companion paper [21]. Using this algorithm, we achieved a high accuracy

in both problems and suggested new candidate stable perovskites and properties of

binary compounds.
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